WavCapsNet: An Interpretable Intelligent Compound Fault Diagnosis Method by Backward Tracking

可解释性 断层(地质) 人工智能 计算机科学 控制重构 小波 特征提取 数据挖掘 模式识别(心理学) 机器学习 嵌入式系统 地震学 地质学
作者
Weihua Li,Hao Lan,Junbin Chen,Ke Feng,Ruyi Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:34
标识
DOI:10.1109/tim.2023.3282664
摘要

With significant advantages in feature learning, the deep learning based compound fault diagnosis method has brought many successful applications for industrial equipment. However, few studies focus on the interpretability of intelligent compound fault diagnosis methods, and the diagnosis results are hard to interpret which prevents the wide application of these methods in practical industrial scenarios. To solve the above challenging problems, an intelligent and interpretable compound fault diagnosis framework, called wavelet capsule network (WavCapsNet), is proposed for machinery by leveraging the backward tracking technique. First, the WavCapsNet is constructed with a wavelet kernel convolutional layer which is employed to learn the features with interpretable meaning from vibration signals, and two capsule layers which endow the diagnosis model with the ability to decouple the compound fault intelligently. Second, the WavCapsNet is trained and optimized with the normal and single fault samples (without compound fault samples). Finally, the interpretable analysis is launched by backward tracking the coupling matrices in capsule layers, which is focused on the relationship between the learned features and different health conditions. The experimental results on a five-speed transmission dataset show that the proposed method, compared to other methods, not only achieves higher compound fault decoupling accuracy under the scenario of incomplete fault data but also improves the transparency and interpretability in the decision-making process of fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茜茜哥哥完成签到,获得积分20
2秒前
迟大猫应助美满的鲂采纳,获得50
2秒前
爱学习的岁岁完成签到 ,获得积分10
5秒前
bkagyin应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得50
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
研友_西门孤晴完成签到,获得积分10
10秒前
13秒前
研友_n0kjPL完成签到,获得积分0
15秒前
小马完成签到,获得积分10
16秒前
烂漫的蜡烛完成签到 ,获得积分10
18秒前
于于于发布了新的文献求助10
19秒前
shutup完成签到,获得积分10
20秒前
直击灵魂完成签到,获得积分10
21秒前
wxs完成签到,获得积分10
22秒前
孤独丹秋发布了新的文献求助20
22秒前
牛奶面包完成签到 ,获得积分10
22秒前
王哈哈完成签到,获得积分10
24秒前
机灵石头完成签到,获得积分10
24秒前
Joker完成签到,获得积分10
26秒前
丰富的大地完成签到,获得积分10
32秒前
zxvcbnm完成签到,获得积分10
32秒前
32秒前
哈哈哈哈完成签到 ,获得积分10
33秒前
科研通AI5应助王哈哈采纳,获得10
33秒前
小红书求接接接接一篇完成签到,获得积分10
34秒前
小鑫完成签到,获得积分10
35秒前
欣喜山晴完成签到,获得积分10
35秒前
今后应助小柒采纳,获得10
37秒前
20240901发布了新的文献求助10
37秒前
危机的芸完成签到 ,获得积分10
39秒前
racill完成签到 ,获得积分10
41秒前
和谐的映梦完成签到,获得积分10
41秒前
43秒前
黄瓜橙橙完成签到,获得积分0
43秒前
科研通AI5应助引子采纳,获得10
43秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709234
求助须知:如何正确求助?哪些是违规求助? 3257371
关于积分的说明 9904441
捐赠科研通 2970244
什么是DOI,文献DOI怎么找? 1629116
邀请新用户注册赠送积分活动 772446
科研通“疑难数据库(出版商)”最低求助积分说明 743806