生物
衰老
转录因子
染色质免疫沉淀
细胞生物学
组蛋白
表观遗传学
染色质
表型
组蛋白H3
突变体
遗传学
发起人
基因表达
基因
作者
Qi Yang,Ting Wang,Jie Cao,Hou‐Ling Wang,Shuya Tan,Yuan Zhang,Sanghoon Park,Hyunsoo Park,Hye Ryun Woo,Xiaojuan Li,Xinli Xia,Hongwei Guo,Z. Li
摘要
Leaf senescence is an orderly process regulated by multiple internal factors and diverse environmental stresses including nutrient deficiency. Histone variants are involved in regulating plant growth and development. However, their functions and underlying regulatory mechanisms in leaf senescence remain largely unclear. Here, we found that H2B histone variant HTB4 functions as a negative regulator of leaf senescence. Loss of function of HTB4 led to early leaf senescence phenotypes that were rescued by functional complementation. RNA-seq analysis revealed that several Ib subgroup basic helix-loop-helix (bHLH) transcription factors (TFs) involved in iron (Fe) homeostasis, including bHLH038, bHLH039, bHLH100, and bHLH101, were suppressed in the htb4 mutant, thereby compromising the expressions of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER (IRT1), two important components of the Fe uptake machinery. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that HTB4 could bind to the promoter regions of Ib bHLH TFs and enhance their expression by promoting the enrichment of the active mark H3K4me3 near their transcriptional start sites. Moreover, overexpression of Ib bHLH TFs or IRT1 suppressed the premature senescence phenotype of the htb4 mutant. Our work established a signaling pathway, HTB4-bHLH TFs-FRO2/IRT1-Fe homeostasis, which regulates the onset and progression of leaf senescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI