Towards Fast and Accurate Image-Text Retrieval With Self-Supervised Fine-Grained Alignment

计算机科学 图像检索 人工智能 情报检索 图像(数学) 图像自动标注 模式识别(心理学) 计算机视觉
作者
Jiamin Zhuang,Jing Yu,Yang Ding,Xiangyan Qu,Yue Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1361-1372 被引量:2
标识
DOI:10.1109/tmm.2023.3280734
摘要

Image-text retrieval requires the system to bridge the heterogenous gap between vision and language for accurate retrieval while keeping the network lightweight-enough for efficient retrieval. Existing trade-off solutions mainly study from the view of incorporating cross-modal interactions with the independent-embedding framework or leveraging stronger pretrained encoders, which still demand time-consuming similarity measurement or heavyweight model structure in the retrieval stage. In this work, we propose an image-text alignment module SelfAlign on top of the independent-embedding framework, which improves the retrieval accuracy while maintains the retrieval efficiency without extra supervision. SelfAlign contains two collaborative sub-modules that force image-text alignment at both concept level and context level by self-supervised contrastive learning. It does not require cross-modal embedding interactions during training while maintaining independent image and text encoders during retrieval. With comparable time cost, SelfAlign consistently boosts the accuracy of state-of-the-art non-pretraining independent-embedding models respectively by 9.1%, 4.2% and 6.6% in terms of R@sum score on Flickr30K, MSCOCO 1K and MS-COCO 5K datasets. The retrieval accuracy also outperforms most existing interactive-embedding models with orders of magnitude decrease in retrieval time. The source code is available at: https://github.com/Zjamie813/SelfAlign.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力的迎松完成签到,获得积分20
刚刚
yujian完成签到,获得积分10
刚刚
1秒前
爆米花应助Mark采纳,获得10
2秒前
情怀应助maozhehai29999采纳,获得10
3秒前
4秒前
yujian发布了新的文献求助10
4秒前
4秒前
寒霜扬名完成签到,获得积分10
6秒前
其亚关注了科研通微信公众号
7秒前
7秒前
8秒前
小马甲应助wang采纳,获得10
8秒前
10秒前
11秒前
乐乐应助lucky采纳,获得10
11秒前
明理的曼凡应助HYT采纳,获得10
12秒前
努力发布了新的文献求助10
13秒前
liqian发布了新的文献求助10
13秒前
张张张晴发布了新的文献求助10
14秒前
Mark发布了新的文献求助10
15秒前
15秒前
16秒前
晶生完成签到,获得积分10
17秒前
17秒前
17秒前
研友_ngkyGn应助隐形的念芹采纳,获得10
19秒前
慕容雅柏完成签到 ,获得积分10
19秒前
好运大王完成签到,获得积分10
19秒前
花花发布了新的文献求助10
22秒前
小yang发布了新的文献求助10
22秒前
xiaoxiao发布了新的文献求助10
22秒前
执着乐双发布了新的文献求助10
24秒前
xuebi发布了新的文献求助30
25秒前
29秒前
佳佳应助kelo采纳,获得10
29秒前
x1nger发布了新的文献求助10
29秒前
30秒前
傲娇的康乃馨完成签到,获得积分20
31秒前
lucky发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993793
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265507
捐赠科研通 3274273
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712