Towards Fast and Accurate Image-Text Retrieval With Self-Supervised Fine-Grained Alignment

计算机科学 图像检索 人工智能 情报检索 图像(数学) 图像自动标注 模式识别(心理学) 计算机视觉
作者
Jiamin Zhuang,Jing Yu,Yang Ding,Xiangyan Qu,Yue Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1361-1372 被引量:4
标识
DOI:10.1109/tmm.2023.3280734
摘要

Image-text retrieval requires the system to bridge the heterogenous gap between vision and language for accurate retrieval while keeping the network lightweight-enough for efficient retrieval. Existing trade-off solutions mainly study from the view of incorporating cross-modal interactions with the independent-embedding framework or leveraging stronger pre-trained encoders, which still demand time-consuming similarity measurement or heavyweight model structure in the retrieval stage. In this work, we propose an image-text alignment module SelfAlign on top of the independent-embedding framework, which improves the retrieval accuracy while maintains the retrieval efficiency without extra supervision. SelfAlign contains two collaborative sub-modules that force image-text alignment at both the concept level and context level by self-supervised contrastive learning. It doesn't require cross-modal embedding interactions during training while maintaining independent image and text encoders during retrieval. With comparable time cost, SelfAlign consistently boosts the accuracy of state-of-the-art non-pre-training independent-embedding models respectively by 9.1%, 4.2%, and 6.6% in terms of R@sum score on Flickr30 K, MS-COCO 1 K and MS-COCO 5 K datasets. The retrieval accuracy also outperforms most existing interactive-embedding models with orders of magnitude decrease in retrieval time. The source code is available at: https://github.com/Zjamie813/SelfAlign .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的康乃馨完成签到 ,获得积分10
刚刚
浮游应助张朝程采纳,获得20
刚刚
悠悠发布了新的文献求助10
刚刚
情怀应助坚强的笑天采纳,获得10
刚刚
KYTYYDS完成签到,获得积分10
刚刚
科研通AI6应助风净沙采纳,获得30
1秒前
Orange应助zycdx3906采纳,获得10
1秒前
ljj521314发布了新的文献求助10
2秒前
专一的白开水完成签到 ,获得积分10
2秒前
2秒前
JL完成签到 ,获得积分10
2秒前
3秒前
今后应助ylyla采纳,获得10
3秒前
actor2006发布了新的文献求助100
3秒前
打打应助鱼鱼采纳,获得10
3秒前
浮游应助陈思宏采纳,获得10
4秒前
5秒前
善良的采蓝完成签到,获得积分20
5秒前
万能图书馆应助丰富曼青采纳,获得10
5秒前
vax完成签到 ,获得积分10
5秒前
现实的艳一完成签到,获得积分10
5秒前
6秒前
multimodal发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
嘉悦发布了新的文献求助20
8秒前
阿呆发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
宋杓发布了新的文献求助10
11秒前
思源应助liu采纳,获得10
12秒前
ccc发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
luoqin发布了新的文献求助10
13秒前
zhy发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461306
求助须知:如何正确求助?哪些是违规求助? 4566276
关于积分的说明 14304569
捐赠科研通 4492010
什么是DOI,文献DOI怎么找? 2460639
邀请新用户注册赠送积分活动 1449964
关于科研通互助平台的介绍 1425599