亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Scattering Similarity and Texture-Based Attention With Convolutional Neural Networks for PolSAR Image Classification

人工智能 计算机科学 散射 模式识别(心理学) 合成孔径雷达 斑点图案 卷积神经网络 遥感 计算机视觉 相似性(几何) 图像(数学) 物理 光学 地理
作者
Qingyi Zhang,Chu He,Bokun He,Ming Tong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:8
标识
DOI:10.1109/tgrs.2023.3273392
摘要

The varying polarimetric orientation angles (POAs) result in scattering diversity, leading to ambiguity in the interpretation of polarimetric synthetic aperture radar (PolSAR) images. Exploring the scattering characteristics in the polarimetric rotation domain (PRD) and the complementary features can help overcome the ambiguity. To address this, we propose a novel PolSAR image classification algorithm called learning scattering similarity and texture-based attention with convolutional neural networks (LSTCNNs). Three strategies are included in the proposed method. First, a pixel-level scattering similarity learning (SSL) module is proposed to analyze the scattering components of radar targets by learning the mapping from PolSAR data in the PRD to typical scattering models, with rotation angles as learnable parameters to utilize scattering diversity and avoid ambiguity. Second, a neighborhood-level texture-based attention (TA) module is proposed to learn the spatially enhanced features of PolSAR images, with the attention module design guided by the physical meaning of texture and consideration of channel and position importance. Finally, the proposed LSTCNN, which includes the SSL module, the TA module, and the classification module, combines pixel-level scattering features in the PRD and neighborhood-level texture features to increase the discriminability of features. The experimental results on three PolSAR images acquired by airborne SAR (AIRSAR) and experimental SAR (E-SAR) demonstrate the robustness and excellence of LSTCNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
范特西完成签到 ,获得积分10
3秒前
领导范儿应助LLLZX采纳,获得30
6秒前
大学生完成签到 ,获得积分10
7秒前
7秒前
18秒前
Luna完成签到,获得积分20
20秒前
tuanheqi应助科研通管家采纳,获得20
22秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
且慢应助科研通管家采纳,获得80
22秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
哑巴和喇叭完成签到 ,获得积分10
22秒前
chenqiumu应助贤惠的如松采纳,获得20
23秒前
27秒前
AAA完成签到,获得积分10
29秒前
CodeCraft应助油柑美式采纳,获得10
32秒前
xin发布了新的文献求助10
32秒前
38秒前
芬栀发布了新的文献求助10
44秒前
minhdh完成签到,获得积分10
44秒前
科研通AI2S应助韦一手采纳,获得10
45秒前
48秒前
Luna发布了新的文献求助10
51秒前
李健的小迷弟应助芬栀采纳,获得10
53秒前
彭于晏应助贤惠的如松采纳,获得20
55秒前
William_l_c完成签到,获得积分10
59秒前
1分钟前
霸气师完成签到 ,获得积分10
1分钟前
可爱的函函应助油柑美式采纳,获得10
1分钟前
riccixuu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498101
求助须知:如何正确求助?哪些是违规求助? 4595469
关于积分的说明 14449140
捐赠科研通 4528169
什么是DOI,文献DOI怎么找? 2481381
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283