Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer

计算机科学 稳健性(进化) 学习迁移 人工智能 对抗制 机器学习 集合(抽象数据类型) 班级(哲学) 上下界 差异(会计) 传输(计算) 数据挖掘 数学 数学分析 生物化学 化学 会计 并行计算 业务 基因 程序设计语言
作者
Yafei Deng,Jun Lv,Delin Huang,Shichang Du
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:548: 126391-126391 被引量:51
标识
DOI:10.1016/j.neucom.2023.126391
摘要

Recently, deep transfer learning-based intelligent machine diagnosis has been well investigated, and the source and the target domain are commonly assumed to share the same fault categories, which can be called as the closed-set diagnosis transfer (CSDT). However, this assumption is hard to cover real engineering scenarios because some unknown new fault may occur unexpectedly due to the uncertainty and complexity of machinery components, which is called as the open-set diagnosis transfer (OSDT). To solve this challenging but more realistic problem, a Theory-guided Progressive Transfer Learning Network (TPTLN) is proposed in this paper. First, the upper bound of transfer learning model under open-set setting is thoroughly analyzed, which provides a theoretical insight to guide the model optimization. Second, a two-stage module is designed to carry out distracting unknown target samples and attracting known samples through progressive learning, which could effectively promote inter-class separability and intra-class compactness. The performance of proposed TPTLN is evaluated in two OSDT cases, where the diagnosis knowledge is transferred across bearings and gearbox running under different working conditions. Comparative results show that the proposed method achieves better robustness and diagnostic performance under different degrees of domain shift and openness variance. The source codes and links to the data can be found in the following GitHub repository: https://github.com/phoenixdyf/Theory-guided-Progressive-Transfer-LearningNetwork.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hygge完成签到 ,获得积分10
1秒前
1秒前
1秒前
舒心秋蝶发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
Loooong应助彩色的天空采纳,获得10
2秒前
1111完成签到,获得积分10
2秒前
gnr2000完成签到,获得积分10
2秒前
小蛇玩完成签到,获得积分10
2秒前
OFish完成签到,获得积分10
3秒前
YSK819完成签到 ,获得积分10
3秒前
xuzj完成签到,获得积分10
3秒前
3秒前
S飞完成签到 ,获得积分10
3秒前
安和桥发布了新的文献求助10
4秒前
wei123456完成签到,获得积分10
4秒前
duolaAmeng完成签到,获得积分10
5秒前
6秒前
我超爱cs发布了新的文献求助30
6秒前
张瀚文发布了新的文献求助10
6秒前
bxhdb完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
在水一方应助LlLly采纳,获得10
8秒前
babylow完成签到,获得积分10
8秒前
满意沛槐完成签到 ,获得积分10
8秒前
Lucas完成签到,获得积分10
10秒前
ding完成签到,获得积分10
10秒前
David完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
Sew东坡完成签到,获得积分10
12秒前
浮笙完成签到,获得积分10
12秒前
三叶草完成签到,获得积分10
13秒前
13秒前
青牛完成签到 ,获得积分10
13秒前
13秒前
TAN完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Greene's Protective Groups in Organic Synthesis 2025 600
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666701
求助须知:如何正确求助?哪些是违规求助? 3225657
关于积分的说明 9764320
捐赠科研通 2935460
什么是DOI,文献DOI怎么找? 1607736
邀请新用户注册赠送积分活动 759338
科研通“疑难数据库(出版商)”最低求助积分说明 735281