Discovering the effective connectome of the brain with dynamic Bayesian DAG learning

计算机科学 连接体 有向无环图 机器学习 人工智能 贝叶斯概率 过程(计算) 人类连接体项目 业务流程发现 数据挖掘 功能连接 算法 在制品 神经科学 操作系统 生物 业务 业务流程 营销 业务流程建模
作者
Abdolmahdi Bagheri,Mohammad Pasande,Kevin Bello,Babak Nadjar Araabi,Alireza Akhondi‐Asl
出处
期刊:NeuroImage [Elsevier]
卷期号:297: 120684-120684
标识
DOI:10.1016/j.neuroimage.2024.120684
摘要

Understanding the complex mechanisms of the brain can be unraveled by extracting the Dynamic Effective Connectome (DEC). Recently, score-based Directed Acyclic Graph (DAG) discovery methods have shown significant improvements in extracting the causal structure and inferring effective connectivity. However, learning DEC through these methods still faces two main challenges: one with the fundamental impotence of high-dimensional dynamic DAG discovery methods and the other with the low quality of fMRI data. In this paper, we introduce Bayesian Dynamic DAG learning with M-matrices Acyclicity characterization (BDyMA) method to address the challenges in discovering DEC. The presented dynamic DAG enables us to discover direct feedback loop edges as well. Leveraging an unconstrained framework in the BDyMA method leads to more accurate results in detecting high-dimensional networks, achieving sparser outcomes, making it particularly suitable for extracting DEC. Additionally, the score function of the BDyMA method allows the incorporation of prior knowledge into the process of dynamic causal discovery which further enhances the accuracy of results. Comprehensive simulations on synthetic data and experiments on Human Connectome Project (HCP) data demonstrate that our method can handle both of the two main challenges, yielding more accurate and reliable DEC compared to state-of-the-art and traditional methods. Additionally, we investigate the trustworthiness of DTI data as prior knowledge for DEC discovery and show the improvements in DEC discovery when the DTI data is incorporated into the process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
的的墨发布了新的文献求助10
1秒前
南烟发布了新的文献求助10
1秒前
niuniu完成签到,获得积分20
2秒前
3秒前
称心寒松发布了新的文献求助10
3秒前
5秒前
5秒前
lixiang发布了新的文献求助10
7秒前
aaao完成签到,获得积分20
8秒前
8秒前
CipherSage应助jam采纳,获得10
11秒前
NexusExplorer应助Keke采纳,获得10
11秒前
AlexLee发布了新的文献求助10
13秒前
橙子皮完成签到,获得积分20
15秒前
唐瑾瑜发布了新的文献求助10
15秒前
15秒前
15秒前
一三五七九完成签到,获得积分20
15秒前
15秒前
sping发布了新的文献求助10
17秒前
伶俐百招完成签到,获得积分10
18秒前
蔫清发布了新的文献求助10
20秒前
稳重宛白发布了新的文献求助10
20秒前
20秒前
果果完成签到,获得积分10
22秒前
li发布了新的文献求助10
22秒前
科研通AI2S应助灯火入眉弯采纳,获得10
23秒前
25秒前
25秒前
领导范儿应助天边一阵风采纳,获得10
25秒前
AlexLee完成签到,获得积分10
27秒前
bvhj完成签到,获得积分10
27秒前
30秒前
鲨猫收藏家完成签到 ,获得积分10
31秒前
长木完成签到,获得积分10
31秒前
李健应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
可爱的函函应助stellafreeman采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055724
求助须知:如何正确求助?哪些是违规求助? 2712356
关于积分的说明 7431187
捐赠科研通 2357329
什么是DOI,文献DOI怎么找? 1248746
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144