Discovering the effective connectome of the brain with dynamic Bayesian DAG learning

计算机科学 连接体 有向无环图 机器学习 人工智能 贝叶斯概率 过程(计算) 人类连接体项目 业务流程发现 数据挖掘 功能连接 算法 在制品 神经科学 操作系统 生物 业务 业务流程 营销 业务流程建模
作者
Abdolmahdi Bagheri,Mohammad Pasande,Kevin Bello,Babak Nadjar Araabi,Alireza Akhondi‐Asl
出处
期刊:NeuroImage [Elsevier]
卷期号:297: 120684-120684
标识
DOI:10.1016/j.neuroimage.2024.120684
摘要

Understanding the complex mechanisms of the brain can be unraveled by extracting the Dynamic Effective Connectome (DEC). Recently, score-based Directed Acyclic Graph (DAG) discovery methods have shown significant improvements in extracting the causal structure and inferring effective connectivity. However, learning DEC through these methods still faces two main challenges: one with the fundamental impotence of high-dimensional dynamic DAG discovery methods and the other with the low quality of fMRI data. In this paper, we introduce Bayesian Dynamic DAG learning with M-matrices Acyclicity characterization (BDyMA) method to address the challenges in discovering DEC. The presented dynamic DAG enables us to discover direct feedback loop edges as well. Leveraging an unconstrained framework in the BDyMA method leads to more accurate results in detecting high-dimensional networks, achieving sparser outcomes, making it particularly suitable for extracting DEC. Additionally, the score function of the BDyMA method allows the incorporation of prior knowledge into the process of dynamic causal discovery which further enhances the accuracy of results. Comprehensive simulations on synthetic data and experiments on Human Connectome Project (HCP) data demonstrate that our method can handle both of the two main challenges, yielding more accurate and reliable DEC compared to state-of-the-art and traditional methods. Additionally, we investigate the trustworthiness of DTI data as prior knowledge for DEC discovery and show the improvements in DEC discovery when the DTI data is incorporated into the process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
英姑应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
史前巨怪完成签到,获得积分10
1秒前
慕青应助mysci采纳,获得10
1秒前
cc发布了新的文献求助10
1秒前
董是鑫完成签到 ,获得积分10
1秒前
逃出生天发布了新的文献求助10
2秒前
2秒前
丘比特应助仅此而已采纳,获得10
2秒前
ddz发布了新的文献求助10
2秒前
2秒前
快乐芒果发布了新的文献求助10
2秒前
weiliu完成签到,获得积分10
2秒前
王一发布了新的文献求助10
3秒前
惊鸿一面发布了新的文献求助10
4秒前
zhang完成签到,获得积分10
4秒前
4秒前
任性依萱完成签到,获得积分10
4秒前
4秒前
4秒前
xianjingli发布了新的文献求助10
5秒前
5秒前
zonglei完成签到,获得积分10
5秒前
CodeCraft应助曦9423采纳,获得10
6秒前
我是老大应助大胆诗云采纳,获得10
6秒前
zcvxd完成签到,获得积分10
6秒前
555646446发布了新的文献求助10
6秒前
瞿听筠发布了新的文献求助10
6秒前
6秒前
fu发布了新的文献求助10
7秒前
7秒前
7秒前
天天快乐应助沧海静音采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710