Discovering the effective connectome of the brain with dynamic Bayesian DAG learning

计算机科学 连接体 有向无环图 机器学习 人工智能 贝叶斯概率 过程(计算) 人类连接体项目 业务流程发现 数据挖掘 功能连接 算法 在制品 神经科学 操作系统 生物 业务 业务流程 营销 业务流程建模
作者
Abdolmahdi Bagheri,Mohammad Pasande,Kevin Bello,Babak Nadjar Araabi,Alireza Akhondi‐Asl
出处
期刊:NeuroImage [Elsevier]
卷期号:297: 120684-120684
标识
DOI:10.1016/j.neuroimage.2024.120684
摘要

Understanding the complex mechanisms of the brain can be unraveled by extracting the Dynamic Effective Connectome (DEC). Recently, score-based Directed Acyclic Graph (DAG) discovery methods have shown significant improvements in extracting the causal structure and inferring effective connectivity. However, learning DEC through these methods still faces two main challenges: one with the fundamental impotence of high-dimensional dynamic DAG discovery methods and the other with the low quality of fMRI data. In this paper, we introduce Bayesian Dynamic DAG learning with M-matrices Acyclicity characterization (BDyMA) method to address the challenges in discovering DEC. The presented dynamic DAG enables us to discover direct feedback loop edges as well. Leveraging an unconstrained framework in the BDyMA method leads to more accurate results in detecting high-dimensional networks, achieving sparser outcomes, making it particularly suitable for extracting DEC. Additionally, the score function of the BDyMA method allows the incorporation of prior knowledge into the process of dynamic causal discovery which further enhances the accuracy of results. Comprehensive simulations on synthetic data and experiments on Human Connectome Project (HCP) data demonstrate that our method can handle both of the two main challenges, yielding more accurate and reliable DEC compared to state-of-the-art and traditional methods. Additionally, we investigate the trustworthiness of DTI data as prior knowledge for DEC discovery and show the improvements in DEC discovery when the DTI data is incorporated into the process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoz完成签到,获得积分10
刚刚
刚刚
xmhxpz完成签到,获得积分10
2秒前
尹梦成完成签到,获得积分10
3秒前
SciGPT应助MOD采纳,获得10
3秒前
脑洞疼应助aa121599采纳,获得10
4秒前
xiaoz发布了新的文献求助30
4秒前
11发布了新的文献求助10
4秒前
6秒前
林天完成签到,获得积分10
7秒前
健康的人达完成签到,获得积分10
9秒前
11秒前
12秒前
冷傲手套发布了新的文献求助30
12秒前
汉堡包应助hanchangcun采纳,获得10
13秒前
14秒前
16秒前
爆米花应助c程序语言采纳,获得10
17秒前
17秒前
行者无疆发布了新的文献求助10
18秒前
沈格完成签到,获得积分10
18秒前
翻斗花园612完成签到,获得积分10
18秒前
慕子完成签到 ,获得积分10
19秒前
kitty完成签到 ,获得积分10
19秒前
21秒前
26秒前
28秒前
28秒前
小zhu完成签到,获得积分10
29秒前
钟冠完成签到,获得积分10
31秒前
洪山老狗完成签到,获得积分10
33秒前
MOD发布了新的文献求助10
34秒前
脑洞疼应助xiaoxixiccccc采纳,获得10
34秒前
万能图书馆应助Umind采纳,获得10
34秒前
35秒前
Zhou完成签到,获得积分10
35秒前
35秒前
田様应助qiany采纳,获得10
36秒前
c程序语言发布了新的文献求助10
39秒前
冷傲手套完成签到,获得积分20
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870