动态规划
周长
图表
计算机科学
数学优化
控制(管理)
控制理论(社会学)
控制工程
工程类
算法
数学
几何学
数据库
人工智能
作者
C. Chen,Nikolas Geroliminis,Renxin Zhong
出处
期刊:Transportation Science
[Institute for Operations Research and the Management Sciences]
日期:2024-05-17
卷期号:58 (4): 896-918
被引量:1
标识
DOI:10.1287/trsc.2023.0091
摘要
Macroscopic fundamental diagrams (MFDs) have been widely adopted to model the traffic flow of large-scale urban networks. Coupling perimeter control and regional route guidance (PCRG) is a promising strategy to decrease congestion heterogeneity and reduce delays in large-scale MFD-based urban networks. For MFD-based PCRG, one needs to distinguish between the dynamics of (a) the plant that represents reality and is used as the simulation tool and (b) the model that contains easier-to-measure states than the plant and is used for devising controllers, that is, the model-plant mismatch should be considered. Traditional model-based methods (e.g., model predictive control (MPC)) require an accurate representation of the plant dynamics as the prediction model. However, because of the inherent network uncertainties, such as uncertain dynamics of heterogeneity and demand disturbance, MFD parameters could be time-varying and uncertain. Conversely, existing data-driven methods (e.g., reinforcement learning) do not consider the model-plant mismatch and the limited access to plant-generated data, for example, subregional OD-specific accumulations. Therefore, we develop an iterative adaptive dynamic programming (IADP)-based method to address the limited data source induced by the model-plant mismatch. An actor-critic neural network structure is developed to circumvent the requirement of complete information on plant dynamics. Performance comparisons with other PCRG schemes under various scenarios are carried out. The numerical results indicate that the IADP controller trained with a limited data source can achieve comparable performance with the “benchmark” MPC approach using perfect measurements from the plant. The results also validate the IADP’s robustness against various uncertainties (e.g., demand noise, MFD error, and trip distance heterogeneity) when minimizing the total time spent in the urban network. These results demonstrate the great potential of the proposed scheme in improving the efficiency of multiregion MFD systems. Funding: The work was jointly funded by the National Natural Science Foundation of China under [Grant 72071214] (R. Zhong), the Dit4Tram project from the European Union’s Horizon 2020 Research and Innovation Programme under [Grant 953783] (N. Geroliminis), and the Research Student Attachment Programme of The Hong Kong Polytechnic University (C. Chen). Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0091 .
科研通智能强力驱动
Strongly Powered by AbleSci AI