Ta-Adapter: Enhancing few-shot CLIP with task-aware encoders

适配器(计算) 计算机科学 任务(项目管理) 编码器 图像(数学) 人工智能 模式识别(心理学) 计算机硬件 计算机视觉 操作系统 经济 管理
作者
Wenbo Zhang,Yifan Zhang,Yuyang Deng,Wenlong Zhang,Jianfeng Lin,Binqiang Huang,Jinlu Zhang,Wenhao Yu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:153: 110559-110559 被引量:9
标识
DOI:10.1016/j.patcog.2024.110559
摘要

Contrastive Language-Image Pre-training (CLIP) has shown impressive zero-shot transfer capabilities, but its potential for specific downstream tasks is not fully utilized. To further enhance CLIP's few-shot capability for specific datasets, some subsequent works have been proposed, such as methods based on lightweight adapters and prompt learning. However, since CLIP is pretrained on a diverse collection of image and text pairs sourced from the internet, it is difficult to sufficiently tune models to specific datasets using only lightweight adaptions. In this paper, we argue that largely modifying the internal representations within CLIP's encoders can yield better results on downstream datasets. In this work, we introduce Ta-Adapter, a method that equips both the visual and textual encoders of CLIP with task-specific prompts. These prompts are generated using a collaborative prompt learning approach, which allows the encoders to produce representations that are better aligned with specific downstream datasets. Then, we initialize an adapter module using the optimized features generated by the task-aware visual encoder for further feature alignment, and this module can also be further fine-tuned. Our extensive experiments on image classification datasets show that compared to the state-of-the-art few-shot methods Tip-Adapter-F and MaPLe, our model exhibits good performance and obtains an average absolute gain of 2.04% and 1.62% on 11 different image recognition datasets, respectively. In conclusion, this work presents a unique and effective approach to unlocking the full potential of CLIP's few-shot learning capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小九九完成签到,获得积分10
1秒前
Sindy完成签到,获得积分10
1秒前
杭紫雪完成签到,获得积分10
2秒前
CYJ完成签到,获得积分10
2秒前
优美的碧琴完成签到,获得积分10
4秒前
舒心的水卉完成签到,获得积分10
4秒前
Purplesky完成签到,获得积分10
4秒前
wzy完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
my完成签到,获得积分10
5秒前
liyuxuan完成签到,获得积分10
5秒前
hentai完成签到,获得积分10
5秒前
小许会更好完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
dong应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
英姑应助科研通管家采纳,获得10
8秒前
LJ发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027