Ta-Adapter: Enhancing few-shot CLIP with task-aware encoders

适配器(计算) 计算机科学 任务(项目管理) 编码器 图像(数学) 人工智能 模式识别(心理学) 计算机硬件 计算机视觉 操作系统 经济 管理
作者
Wenbo Zhang,Yifan Zhang,Yuyang Deng,Wenlong Zhang,Jianfeng Lin,Binqiang Huang,Jinlu Zhang,Wenhao Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110559-110559 被引量:13
标识
DOI:10.1016/j.patcog.2024.110559
摘要

Contrastive Language-Image Pre-training (CLIP) has shown impressive zero-shot transfer capabilities, but its potential for specific downstream tasks is not fully utilized. To further enhance CLIP's few-shot capability for specific datasets, some subsequent works have been proposed, such as methods based on lightweight adapters and prompt learning. However, since CLIP is pretrained on a diverse collection of image and text pairs sourced from the internet, it is difficult to sufficiently tune models to specific datasets using only lightweight adaptions. In this paper, we argue that largely modifying the internal representations within CLIP's encoders can yield better results on downstream datasets. In this work, we introduce Ta-Adapter, a method that equips both the visual and textual encoders of CLIP with task-specific prompts. These prompts are generated using a collaborative prompt learning approach, which allows the encoders to produce representations that are better aligned with specific downstream datasets. Then, we initialize an adapter module using the optimized features generated by the task-aware visual encoder for further feature alignment, and this module can also be further fine-tuned. Our extensive experiments on image classification datasets show that compared to the state-of-the-art few-shot methods Tip-Adapter-F and MaPLe, our model exhibits good performance and obtains an average absolute gain of 2.04% and 1.62% on 11 different image recognition datasets, respectively. In conclusion, this work presents a unique and effective approach to unlocking the full potential of CLIP's few-shot learning capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChandlerZB完成签到,获得积分10
1秒前
1秒前
2秒前
Ava应助yl采纳,获得10
3秒前
英俊的铭应助leyi采纳,获得30
7秒前
自由滑大王完成签到 ,获得积分10
8秒前
9秒前
SciGPT应助魔幻乘云采纳,获得10
10秒前
江姜酱先生完成签到,获得积分10
12秒前
图图羊完成签到,获得积分10
12秒前
思源应助不安的冷荷采纳,获得10
13秒前
木鸽子发布了新的文献求助30
15秒前
15秒前
psq0061应助鲜艳的芹采纳,获得20
16秒前
psylan应助图图羊采纳,获得10
16秒前
saslaosiji完成签到,获得积分10
16秒前
17秒前
渭水飞熊发布了新的文献求助10
17秒前
18秒前
fenglin4620发布了新的文献求助10
20秒前
20秒前
yang完成签到,获得积分10
21秒前
23秒前
废物打工人完成签到,获得积分10
24秒前
哈哈哈哈发布了新的文献求助10
24秒前
27秒前
芬达完成签到,获得积分10
27秒前
28秒前
魔幻乘云完成签到,获得积分20
28秒前
30秒前
chen完成签到,获得积分10
33秒前
魔幻乘云发布了新的文献求助10
33秒前
蛇蛇王子完成签到 ,获得积分10
33秒前
浮游应助saslaosiji采纳,获得10
35秒前
程老六完成签到 ,获得积分10
36秒前
大大小发布了新的文献求助20
37秒前
37秒前
老北京发布了新的文献求助10
37秒前
刻苦的媚颜完成签到 ,获得积分10
38秒前
艾路完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841