Ta-Adapter: Enhancing few-shot CLIP with task-aware encoders

适配器(计算) 计算机科学 任务(项目管理) 编码器 图像(数学) 人工智能 模式识别(心理学) 计算机硬件 计算机视觉 操作系统 经济 管理
作者
Wenbo Zhang,Yifan Zhang,Yuyang Deng,Wenlong Zhang,Jianfeng Lin,Binqiang Huang,Jinlu Zhang,Wenhao Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110559-110559 被引量:13
标识
DOI:10.1016/j.patcog.2024.110559
摘要

Contrastive Language-Image Pre-training (CLIP) has shown impressive zero-shot transfer capabilities, but its potential for specific downstream tasks is not fully utilized. To further enhance CLIP's few-shot capability for specific datasets, some subsequent works have been proposed, such as methods based on lightweight adapters and prompt learning. However, since CLIP is pretrained on a diverse collection of image and text pairs sourced from the internet, it is difficult to sufficiently tune models to specific datasets using only lightweight adaptions. In this paper, we argue that largely modifying the internal representations within CLIP's encoders can yield better results on downstream datasets. In this work, we introduce Ta-Adapter, a method that equips both the visual and textual encoders of CLIP with task-specific prompts. These prompts are generated using a collaborative prompt learning approach, which allows the encoders to produce representations that are better aligned with specific downstream datasets. Then, we initialize an adapter module using the optimized features generated by the task-aware visual encoder for further feature alignment, and this module can also be further fine-tuned. Our extensive experiments on image classification datasets show that compared to the state-of-the-art few-shot methods Tip-Adapter-F and MaPLe, our model exhibits good performance and obtains an average absolute gain of 2.04% and 1.62% on 11 different image recognition datasets, respectively. In conclusion, this work presents a unique and effective approach to unlocking the full potential of CLIP's few-shot learning capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
enen发布了新的文献求助10
1秒前
1秒前
2秒前
欣怡高发布了新的文献求助10
2秒前
余繁发布了新的文献求助10
5秒前
阿巴巴巴吧完成签到,获得积分10
5秒前
ahh完成签到 ,获得积分10
5秒前
5秒前
无极微光应助Redback采纳,获得20
5秒前
llsknd发布了新的文献求助10
7秒前
小胖胖发布了新的文献求助10
7秒前
enen完成签到,获得积分20
8秒前
浮游应助甜美乘云采纳,获得10
9秒前
怕黑剑封发布了新的文献求助10
9秒前
wanci应助George采纳,获得30
9秒前
9秒前
Orange应助学霸土豆采纳,获得20
11秒前
科研通AI6应助田字格采纳,获得10
11秒前
Rear21完成签到,获得积分10
11秒前
无聊的老姆完成签到 ,获得积分10
12秒前
怕黑剑封发布了新的文献求助10
14秒前
14秒前
15秒前
灵巧灵萱发布了新的文献求助10
15秒前
专注的问寒应助三七采纳,获得20
15秒前
科目三应助欣怡高采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
mufcyang发布了新的文献求助10
18秒前
19秒前
白晓松发布了新的文献求助10
19秒前
xing发布了新的文献求助10
19秒前
学霸土豆发布了新的文献求助20
21秒前
22秒前
23秒前
蓝天发布了新的文献求助10
24秒前
Rocket完成签到,获得积分10
24秒前
vtfangfangfang完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714