Ta-Adapter: Enhancing few-shot CLIP with task-aware encoders

适配器(计算) 计算机科学 任务(项目管理) 弹丸 编码器 人工智能 计算机硬件 操作系统 工程类 化学 系统工程 有机化学
作者
Wen-bo ZHANG,Yifan Zhang,Yuyang Deng,Wenlong Zhang,Jianfeng Lin,Binqiang Huang,Jinlu Zhang,Wenhao Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110559-110559 被引量:3
标识
DOI:10.1016/j.patcog.2024.110559
摘要

Contrastive Language-Image Pre-training (CLIP) has shown impressive zero-shot transfer capabilities, but its potential for specific downstream tasks is not fully utilized. To further enhance CLIP's few-shot capability for specific datasets, some subsequent works have been proposed, such as methods based on lightweight adapters and prompt learning. However, since CLIP is pretrained on a diverse collection of image and text pairs sourced from the internet, it is difficult to sufficiently tune models to specific datasets using only lightweight adaptions. In this paper, we argue that largely modifying the internal representations within CLIP's encoders can yield better results on downstream datasets. In this work, we introduce Ta-Adapter, a method that equips both the visual and textual encoders of CLIP with task-specific prompts. These prompts are generated using a collaborative prompt learning approach, which allows the encoders to produce representations that are better aligned with specific downstream datasets. Then, we initialize an adapter module using the optimized features generated by the task-aware visual encoder for further feature alignment, and this module can also be further fine-tuned. Our extensive experiments on image classification datasets show that compared to the state-of-the-art few-shot methods Tip-Adapter-F and MaPLe, our model exhibits good performance and obtains an average absolute gain of 2.04% and 1.62% on 11 different image recognition datasets, respectively. In conclusion, this work presents a unique and effective approach to unlocking the full potential of CLIP's few-shot learning capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
InfoNinja应助科研通管家采纳,获得30
2秒前
桂花乌龙应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
Fan完成签到,获得积分10
4秒前
12完成签到,获得积分10
7秒前
不安夜雪完成签到 ,获得积分10
12秒前
匹诺曹完成签到,获得积分10
14秒前
14秒前
15秒前
赘婿应助kento采纳,获得100
15秒前
19秒前
20秒前
不配.应助不喝奶茶采纳,获得10
20秒前
蟒玉朝天完成签到 ,获得积分10
22秒前
yin完成签到 ,获得积分10
22秒前
不配.应助杨秋月采纳,获得10
25秒前
Begonia完成签到 ,获得积分10
25秒前
eresun完成签到,获得积分10
25秒前
0x1orz发布了新的文献求助10
25秒前
不配.应助paopao采纳,获得10
30秒前
31秒前
小马甲应助derek采纳,获得10
32秒前
32秒前
无私的芸遥完成签到,获得积分10
35秒前
海角七号完成签到 ,获得积分10
39秒前
JamesPei应助Jeffery采纳,获得10
39秒前
39秒前
Fe_001完成签到 ,获得积分10
41秒前
hl发布了新的文献求助10
42秒前
纪俊发布了新的文献求助10
45秒前
46秒前
48秒前
myy发布了新的文献求助10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825