Ta-Adapter: Enhancing few-shot CLIP with task-aware encoders

适配器(计算) 计算机科学 任务(项目管理) 编码器 图像(数学) 人工智能 模式识别(心理学) 计算机硬件 计算机视觉 操作系统 经济 管理
作者
Wenbo Zhang,Yifan Zhang,Yuyang Deng,Wenlong Zhang,Jianfeng Lin,Binqiang Huang,Jinlu Zhang,Wenhao Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110559-110559 被引量:13
标识
DOI:10.1016/j.patcog.2024.110559
摘要

Contrastive Language-Image Pre-training (CLIP) has shown impressive zero-shot transfer capabilities, but its potential for specific downstream tasks is not fully utilized. To further enhance CLIP's few-shot capability for specific datasets, some subsequent works have been proposed, such as methods based on lightweight adapters and prompt learning. However, since CLIP is pretrained on a diverse collection of image and text pairs sourced from the internet, it is difficult to sufficiently tune models to specific datasets using only lightweight adaptions. In this paper, we argue that largely modifying the internal representations within CLIP's encoders can yield better results on downstream datasets. In this work, we introduce Ta-Adapter, a method that equips both the visual and textual encoders of CLIP with task-specific prompts. These prompts are generated using a collaborative prompt learning approach, which allows the encoders to produce representations that are better aligned with specific downstream datasets. Then, we initialize an adapter module using the optimized features generated by the task-aware visual encoder for further feature alignment, and this module can also be further fine-tuned. Our extensive experiments on image classification datasets show that compared to the state-of-the-art few-shot methods Tip-Adapter-F and MaPLe, our model exhibits good performance and obtains an average absolute gain of 2.04% and 1.62% on 11 different image recognition datasets, respectively. In conclusion, this work presents a unique and effective approach to unlocking the full potential of CLIP's few-shot learning capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助Ppp采纳,获得30
1秒前
2秒前
桐桐应助栖迟采纳,获得10
2秒前
4秒前
4秒前
赫青亦驳回了iNk应助
4秒前
花畦种豆发布了新的文献求助10
4秒前
xiaowang发布了新的文献求助10
4秒前
6秒前
精明的靖雁完成签到,获得积分10
6秒前
科研通AI6应助丫丫采纳,获得10
6秒前
6秒前
gao发布了新的文献求助10
6秒前
6秒前
7秒前
潘潘完成签到,获得积分10
7秒前
JiaoJiao发布了新的文献求助10
7秒前
大模型应助lzl993采纳,获得20
7秒前
迷路m发布了新的文献求助10
8秒前
哆啦A榕发布了新的文献求助10
9秒前
9秒前
Cest完成签到 ,获得积分10
9秒前
满意雪碧发布了新的文献求助10
10秒前
Ava应助王肖采纳,获得10
10秒前
科目三应助沙糖桔采纳,获得10
10秒前
星辰大海应助aming采纳,获得10
10秒前
任性醉山发布了新的文献求助10
11秒前
anpingzhao完成签到,获得积分10
11秒前
gorgeous发布了新的文献求助10
11秒前
11秒前
look完成签到,获得积分10
11秒前
Iridescent发布了新的文献求助10
11秒前
chenzhi发布了新的文献求助10
12秒前
14秒前
小灰灰666发布了新的文献求助10
14秒前
15秒前
可耐的碧萱应助超级以云采纳,获得10
15秒前
量子星尘发布了新的文献求助10
17秒前
小马甲应助任性醉山采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760