亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolving testing scenario generation and intelligence evaluation for automated vehicles

计算机科学 系统工程 人工智能 工程类
作者
Yining Ma,Wei Jiang,Lingtong Zhang,Junyi Chen,Hong Wang,Chen Lv,Xuesong Wang,Lu Xiong
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:163: 104620-104620
标识
DOI:10.1016/j.trc.2024.104620
摘要

Interaction between the background vehicles (BVs) and automated vehicles (AVs) in scenario-based testing plays a critical role in evaluating the intelligence of the AVs. Current testing scenarios typically employ predefined or scripted BVs, which inadequately reflect the complexity of human-like social behaviors in real-world driving scenarios, and also lack a systematic metric for evaluating the comprehensive intelligence of AVs. Therefore, this paper proposes an evolving scenario generation method, employing deep reinforcement learning (DRL) to construct human-like BVs that interact with AVs, and this evolving scenario is designed to test and evaluate the intelligence of AVs. Firstly, a class of BV driver models with human-like competitive, mutual, and cooperative driving motivations is designed. Then, utilizing the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and an improved level-k training procedure, the three distinct driver models acquire game-based interactive driving policies. And these driver models are combined to generate evolving scenarios in which they can interact continuously and evolve diverse contents. Next, a framework including safety, driving efficiency, and interaction utility are presented to evaluate and quantify the intelligence performance of 3 systems under test (SUTs), indicating the effectiveness of the evolving scenario for intelligence testing. Finally, the complexity and fidelity of the proposed evolving testing scenario are validated. The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data. This highlights the potential of the proposed method to facilitate the development and evaluation of high-level AVs in a realistic and challenging environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongdi521完成签到,获得积分10
1秒前
mmyhn发布了新的文献求助10
10秒前
21秒前
52秒前
Liiiiiiiiii发布了新的文献求助10
57秒前
三水完成签到 ,获得积分20
1分钟前
小净完成签到 ,获得积分20
1分钟前
cccttt完成签到,获得积分10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
Echo完成签到,获得积分10
1分钟前
无花果应助zzx采纳,获得10
1分钟前
可爱的香菇完成签到 ,获得积分10
1分钟前
1分钟前
dovejingling完成签到,获得积分10
1分钟前
lulu发布了新的文献求助20
1分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
2分钟前
李沐唅完成签到 ,获得积分10
2分钟前
核桃发布了新的文献求助30
2分钟前
2分钟前
阿凯完成签到 ,获得积分10
2分钟前
zzx发布了新的文献求助10
2分钟前
zzx完成签到,获得积分10
2分钟前
小泉完成签到 ,获得积分10
2分钟前
星辰大海应助高兴的忆曼采纳,获得10
3分钟前
英姑应助核桃采纳,获得10
3分钟前
科研通AI5应助核桃采纳,获得10
3分钟前
科研通AI5应助核桃采纳,获得10
3分钟前
可爱的函函应助核桃采纳,获得10
3分钟前
Liufgui应助核桃采纳,获得10
3分钟前
在水一方应助核桃采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
LONG完成签到 ,获得积分10
4分钟前
秋风今是完成签到 ,获得积分10
4分钟前
4分钟前
核桃发布了新的文献求助10
4分钟前
biubiubiu驳回了852应助
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256334
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228