清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evolving testing scenario generation and intelligence evaluation for automated vehicles

计算机科学 系统工程 人工智能 工程类
作者
Yining Ma,Wei Jiang,Lingtong Zhang,Junyi Chen,Hong Wang,Chen Lv,Xuesong Wang,Lu Xiong
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:163: 104620-104620
标识
DOI:10.1016/j.trc.2024.104620
摘要

Interaction between the background vehicles (BVs) and automated vehicles (AVs) in scenario-based testing plays a critical role in evaluating the intelligence of the AVs. Current testing scenarios typically employ predefined or scripted BVs, which inadequately reflect the complexity of human-like social behaviors in real-world driving scenarios, and also lack a systematic metric for evaluating the comprehensive intelligence of AVs. Therefore, this paper proposes an evolving scenario generation method, employing deep reinforcement learning (DRL) to construct human-like BVs that interact with AVs, and this evolving scenario is designed to test and evaluate the intelligence of AVs. Firstly, a class of BV driver models with human-like competitive, mutual, and cooperative driving motivations is designed. Then, utilizing the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and an improved level-k training procedure, the three distinct driver models acquire game-based interactive driving policies. And these driver models are combined to generate evolving scenarios in which they can interact continuously and evolve diverse contents. Next, a framework including safety, driving efficiency, and interaction utility are presented to evaluate and quantify the intelligence performance of 3 systems under test (SUTs), indicating the effectiveness of the evolving scenario for intelligence testing. Finally, the complexity and fidelity of the proposed evolving testing scenario are validated. The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data. This highlights the potential of the proposed method to facilitate the development and evaluation of high-level AVs in a realistic and challenging environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十分十分佳完成签到,获得积分10
1秒前
浮游应助LeezZZZ采纳,获得10
3秒前
俊逸的盛男完成签到 ,获得积分10
21秒前
吴静完成签到 ,获得积分10
53秒前
灯光师完成签到,获得积分10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
大雁完成签到 ,获得积分10
1分钟前
科研通AI5应助灯光师采纳,获得10
1分钟前
zyjsunye完成签到 ,获得积分10
1分钟前
1分钟前
加油发布了新的文献求助10
1分钟前
大胆面包完成签到 ,获得积分10
1分钟前
完美世界应助加油采纳,获得10
1分钟前
1分钟前
Yoanna应助科研通管家采纳,获得30
1分钟前
1分钟前
闹心发布了新的文献求助10
1分钟前
彭晓雅发布了新的文献求助80
1分钟前
一个小胖子完成签到,获得积分10
2分钟前
Akim应助一个小胖子采纳,获得10
2分钟前
斯文败类应助LeezZZZ采纳,获得10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
cgs完成签到 ,获得积分10
2分钟前
2分钟前
西安浴日光能赵炜完成签到,获得积分10
2分钟前
李铃锐完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
鹏哥爱科研完成签到,获得积分20
3分钟前
灯光师发布了新的文献求助10
3分钟前
roger完成签到 ,获得积分10
3分钟前
王波完成签到 ,获得积分10
3分钟前
3分钟前
晚风发布了新的文献求助10
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
万能图书馆应助晚风采纳,获得10
3分钟前
Jayzie完成签到 ,获得积分10
4分钟前
赵李锋完成签到,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149474
求助须知:如何正确求助?哪些是违规求助? 4345460
关于积分的说明 13530498
捐赠科研通 4187811
什么是DOI,文献DOI怎么找? 2296482
邀请新用户注册赠送积分活动 1296860
关于科研通互助平台的介绍 1241187