Evolving testing scenario generation and intelligence evaluation for automated vehicles

计算机科学 系统工程 人工智能 工程类
作者
Yining Ma,Wei Jiang,Lingtong Zhang,Junyi Chen,Hong Wang,Chen Lv,Xuesong Wang,Lu Xiong
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:163: 104620-104620
标识
DOI:10.1016/j.trc.2024.104620
摘要

Interaction between the background vehicles (BVs) and automated vehicles (AVs) in scenario-based testing plays a critical role in evaluating the intelligence of the AVs. Current testing scenarios typically employ predefined or scripted BVs, which inadequately reflect the complexity of human-like social behaviors in real-world driving scenarios, and also lack a systematic metric for evaluating the comprehensive intelligence of AVs. Therefore, this paper proposes an evolving scenario generation method, employing deep reinforcement learning (DRL) to construct human-like BVs that interact with AVs, and this evolving scenario is designed to test and evaluate the intelligence of AVs. Firstly, a class of BV driver models with human-like competitive, mutual, and cooperative driving motivations is designed. Then, utilizing the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and an improved level-k training procedure, the three distinct driver models acquire game-based interactive driving policies. And these driver models are combined to generate evolving scenarios in which they can interact continuously and evolve diverse contents. Next, a framework including safety, driving efficiency, and interaction utility are presented to evaluate and quantify the intelligence performance of 3 systems under test (SUTs), indicating the effectiveness of the evolving scenario for intelligence testing. Finally, the complexity and fidelity of the proposed evolving testing scenario are validated. The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data. This highlights the potential of the proposed method to facilitate the development and evaluation of high-level AVs in a realistic and challenging environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stageruner完成签到,获得积分10
刚刚
l玖完成签到,获得积分10
刚刚
刚刚
xixi发布了新的文献求助10
1秒前
葡萄成熟发布了新的文献求助30
1秒前
zyyyyyy发布了新的文献求助10
2秒前
科研小白牛牛完成签到 ,获得积分0
2秒前
温乘云完成签到,获得积分10
2秒前
快乐太英完成签到 ,获得积分10
3秒前
重要从丹发布了新的文献求助10
4秒前
安然完成签到,获得积分20
4秒前
mmm完成签到 ,获得积分10
4秒前
4秒前
4秒前
Raineagle完成签到,获得积分10
5秒前
5秒前
6秒前
lizzzzzz完成签到,获得积分10
6秒前
笑点低的以亦完成签到,获得积分10
6秒前
乐乐应助xixi采纳,获得30
7秒前
饱满的曼寒完成签到,获得积分10
7秒前
bruna应助sxlmm0924采纳,获得50
8秒前
HXH完成签到,获得积分20
8秒前
hyhyhyhy发布了新的文献求助10
8秒前
celluq发布了新的文献求助10
9秒前
76发布了新的文献求助10
9秒前
9秒前
羡羡呀完成签到 ,获得积分10
9秒前
青羽完成签到 ,获得积分10
9秒前
安然发布了新的文献求助10
10秒前
11秒前
搜集达人应助XiYang采纳,获得10
11秒前
大个应助蕾蕾采纳,获得10
11秒前
彭于彦祖应助lsyt采纳,获得30
11秒前
所所应助饱满的曼寒采纳,获得10
12秒前
12秒前
13秒前
14秒前
我叫胖子发布了新的文献求助10
14秒前
123发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151195
求助须知:如何正确求助?哪些是违规求助? 2802651
关于积分的说明 7849434
捐赠科研通 2460087
什么是DOI,文献DOI怎么找? 1309478
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601760