Evolving testing scenario generation and intelligence evaluation for automated vehicles

计算机科学 系统工程 人工智能 工程类
作者
Yining Ma,Wei Jiang,Lingtong Zhang,Junyi Chen,Hong Wang,Chen Lv,Xuesong Wang,Lu Xiong
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:163: 104620-104620
标识
DOI:10.1016/j.trc.2024.104620
摘要

Interaction between the background vehicles (BVs) and automated vehicles (AVs) in scenario-based testing plays a critical role in evaluating the intelligence of the AVs. Current testing scenarios typically employ predefined or scripted BVs, which inadequately reflect the complexity of human-like social behaviors in real-world driving scenarios, and also lack a systematic metric for evaluating the comprehensive intelligence of AVs. Therefore, this paper proposes an evolving scenario generation method, employing deep reinforcement learning (DRL) to construct human-like BVs that interact with AVs, and this evolving scenario is designed to test and evaluate the intelligence of AVs. Firstly, a class of BV driver models with human-like competitive, mutual, and cooperative driving motivations is designed. Then, utilizing the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and an improved level-k training procedure, the three distinct driver models acquire game-based interactive driving policies. And these driver models are combined to generate evolving scenarios in which they can interact continuously and evolve diverse contents. Next, a framework including safety, driving efficiency, and interaction utility are presented to evaluate and quantify the intelligence performance of 3 systems under test (SUTs), indicating the effectiveness of the evolving scenario for intelligence testing. Finally, the complexity and fidelity of the proposed evolving testing scenario are validated. The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data. This highlights the potential of the proposed method to facilitate the development and evaluation of high-level AVs in a realistic and challenging environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追光者完成签到,获得积分10
刚刚
HJJHJH发布了新的文献求助10
1秒前
Advance.Cheng发布了新的文献求助10
1秒前
传统的大白完成签到,获得积分10
1秒前
复杂的白秋完成签到,获得积分10
2秒前
2秒前
舒适的平蓝完成签到,获得积分10
3秒前
DAI123完成签到,获得积分10
3秒前
3秒前
阳yang发布了新的文献求助10
3秒前
HIH完成签到 ,获得积分10
4秒前
可靠的寒风完成签到,获得积分10
5秒前
Pan完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
丢丢丢完成签到,获得积分10
6秒前
安静的ky完成签到,获得积分10
6秒前
JamesPei应助mary采纳,获得10
6秒前
木子林夕完成签到,获得积分10
6秒前
勤奋尔丝完成签到 ,获得积分10
7秒前
7秒前
8秒前
haozi完成签到,获得积分10
8秒前
啾啾啾发布了新的文献求助30
9秒前
KK发布了新的文献求助10
9秒前
魏魏魏完成签到,获得积分10
9秒前
明明发布了新的文献求助10
10秒前
pluto应助淘气科研采纳,获得10
10秒前
晴栀发布了新的文献求助10
10秒前
单纯血茗发布了新的文献求助50
10秒前
冷艳的冬萱完成签到 ,获得积分10
11秒前
lemon完成签到,获得积分10
11秒前
平常的路人完成签到,获得积分10
11秒前
丢丢丢发布了新的文献求助10
12秒前
orixero应助靖123456采纳,获得10
15秒前
SYLH应助chlgkmoney采纳,获得30
15秒前
阳洋洋发布了新的文献求助10
17秒前
所所应助tuo zhang采纳,获得10
18秒前
大米哈哈完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029