已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evolving testing scenario generation and intelligence evaluation for automated vehicles

计算机科学 系统工程 人工智能 工程类
作者
Yining Ma,Wei Jiang,Lingtong Zhang,Junyi Chen,Hong Wang,Chen Lv,Xuesong Wang,Lu Xiong
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:163: 104620-104620
标识
DOI:10.1016/j.trc.2024.104620
摘要

Interaction between the background vehicles (BVs) and automated vehicles (AVs) in scenario-based testing plays a critical role in evaluating the intelligence of the AVs. Current testing scenarios typically employ predefined or scripted BVs, which inadequately reflect the complexity of human-like social behaviors in real-world driving scenarios, and also lack a systematic metric for evaluating the comprehensive intelligence of AVs. Therefore, this paper proposes an evolving scenario generation method, employing deep reinforcement learning (DRL) to construct human-like BVs that interact with AVs, and this evolving scenario is designed to test and evaluate the intelligence of AVs. Firstly, a class of BV driver models with human-like competitive, mutual, and cooperative driving motivations is designed. Then, utilizing the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and an improved level-k training procedure, the three distinct driver models acquire game-based interactive driving policies. And these driver models are combined to generate evolving scenarios in which they can interact continuously and evolve diverse contents. Next, a framework including safety, driving efficiency, and interaction utility are presented to evaluate and quantify the intelligence performance of 3 systems under test (SUTs), indicating the effectiveness of the evolving scenario for intelligence testing. Finally, the complexity and fidelity of the proposed evolving testing scenario are validated. The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data. This highlights the potential of the proposed method to facilitate the development and evaluation of high-level AVs in a realistic and challenging environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶格尔完成签到 ,获得积分10
2秒前
空2完成签到 ,获得积分0
3秒前
羽羽完成签到 ,获得积分10
4秒前
plant完成签到 ,获得积分10
5秒前
figure完成签到 ,获得积分10
5秒前
高山流水完成签到,获得积分10
6秒前
霁星河完成签到,获得积分10
6秒前
lf完成签到,获得积分10
7秒前
柚子完成签到 ,获得积分10
7秒前
qq完成签到 ,获得积分10
8秒前
糊涂的皮皮虾完成签到 ,获得积分10
9秒前
9秒前
yipeng完成签到,获得积分10
10秒前
10秒前
米米发布了新的文献求助10
12秒前
13秒前
新田十一郎完成签到,获得积分20
15秒前
英俊的铭应助我的小宝贝采纳,获得10
15秒前
yipeng发布了新的文献求助10
15秒前
momo应助张aa采纳,获得10
16秒前
mw完成签到,获得积分10
16秒前
17秒前
优秀的枕头完成签到,获得积分10
19秒前
小二郎应助我的小宝贝采纳,获得10
20秒前
21秒前
香山叶正红完成签到 ,获得积分10
21秒前
junkook完成签到 ,获得积分10
21秒前
酷波er应助蜀山采纳,获得10
22秒前
JamesPei应助新田十一郎采纳,获得10
22秒前
HCCha完成签到,获得积分10
24秒前
研友_Zlx3aZ发布了新的文献求助10
25秒前
MchemG应助weishen采纳,获得50
27秒前
淡水鱼完成签到 ,获得积分10
28秒前
32秒前
鞑靼完成签到 ,获得积分10
32秒前
35秒前
36秒前
蜀山发布了新的文献求助10
36秒前
Janus完成签到,获得积分10
36秒前
hnu完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989957
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256000
捐赠科研通 3270880
什么是DOI,文献DOI怎么找? 1805070
邀请新用户注册赠送积分活动 882252
科研通“疑难数据库(出版商)”最低求助积分说明 809216