ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs

计算机科学 背景(考古学) 一致性(知识库) 质量(理念) 医学诊断 渲染(计算机图形) 医学 人工智能 病理 古生物学 哲学 认识论 生物
作者
Zihao Zhao,Sheng Wang,Jinchen Gu,Yitao Zhu,Lanzhuju Mei,Zixu Zhuang,Zhiming Cui,Qian Wang,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tmi.2024.3398350
摘要

The integration of Computer-Aided Diagnosis (CAD) with Large Language Models (LLMs) presents a promising frontier in clinical applications, notably in automating diagnostic processes akin to those performed by radiologists and providing consultations similar to a virtual family doctor. Despite the promising potential of this integration, current works face at least two limitations: (1) From the perspective of a radiologist, existing studies typically have a restricted scope of applicable imaging domains, failing to meet the diagnostic needs of different patients. Also, the insufficient diagnostic capability of LLMs further undermine the quality and reliability of the generated medical reports. (2) Current LLMs lack the requisite depth in medical expertise, rendering them less effective as virtual family doctors due to the potential unreliability of the advice provided during patient consultations. To address these limitations, we introduce ChatCAD+, to be universal and reliable. Specifically, it is featured by two main modules: (1) Reliable Report Generation and (2) Reliable Interaction. The Reliable Report Generation module is capable of interpreting medical images from diverse domains and generate high-quality medical reports via our proposed hierarchical in-context learning. Concurrently, the interaction module leverages up-to-date information from reputable medical websites to provide reliable medical advice. Together, these designed modules synergize to closely align with the expertise of human medical professionals, offering enhanced consistency and reliability for interpretation and advice. The source code is available at GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到,获得积分10
1秒前
zi应助刘海柱采纳,获得10
2秒前
chenchuwen完成签到,获得积分10
4秒前
6秒前
6秒前
shann完成签到,获得积分10
7秒前
zewangguo发布了新的文献求助10
8秒前
桐桐应助ayyy采纳,获得10
9秒前
111完成签到,获得积分10
10秒前
11秒前
研友_VZG7GZ应助南山柴郎采纳,获得10
11秒前
fff发布了新的文献求助10
12秒前
12秒前
111发布了新的文献求助10
13秒前
16秒前
Hayat应助单纯的思松采纳,获得10
17秒前
zewangguo发布了新的文献求助10
17秒前
红柚发布了新的文献求助10
18秒前
19秒前
ZZZZ发布了新的文献求助10
19秒前
wp0715发布了新的文献求助10
20秒前
反杀闰土的猹完成签到 ,获得积分10
25秒前
Fareth发布了新的文献求助10
25秒前
ayyy完成签到,获得积分10
29秒前
YuLu发布了新的文献求助10
31秒前
赘婿应助wp0715采纳,获得10
31秒前
32秒前
fff完成签到,获得积分10
32秒前
33秒前
吴世勋fans发布了新的文献求助10
36秒前
ayyy发布了新的文献求助10
37秒前
38秒前
zewangguo完成签到,获得积分20
40秒前
夏侯乐枫完成签到,获得积分10
41秒前
Fareth完成签到,获得积分10
41秒前
定一发布了新的文献求助10
41秒前
44秒前
44秒前
45秒前
kirin完成签到,获得积分10
46秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349006
求助须知:如何正确求助?哪些是违规求助? 2975178
关于积分的说明 8667779
捐赠科研通 2655842
什么是DOI,文献DOI怎么找? 1454247
科研通“疑难数据库(出版商)”最低求助积分说明 673254
邀请新用户注册赠送积分活动 663696