钙钛矿(结构)
纳米晶
光催化
材料科学
兴奋剂
极化(电化学)
自旋极化
还原(数学)
光电子学
凝聚态物理
纳米技术
化学
结晶学
物理化学
物理
催化作用
生物化学
几何学
数学
量子力学
电子
作者
Tae Hyung Kim,Kayoung Cho,Su-Hwan Lee,Jun Hyeok Kang,Ho Bum Park,Jaehong Park,Young‐Hoon Kim
标识
DOI:10.1016/j.cej.2024.152095
摘要
Spin manipulation offers an effective strategy to enhance photocatalytic activity in metal halide perovskites by suppressing the recombination of photo-excited electrons. However, the scope of the magnetic dopant inducing spin polarization is still limited. Here, we introduce synergetic strategies to polarize the spin in photo-excited electrons and boost their photocatalytic activity for CO2 reduction. We dope iron cation (Fe2+) into CsPbBr3 perovskite nanocrystals (PNCs). Fe ions induce paramagnetism, fostering spin polarization within the Fe-doped CsPbBr3 PNCs (Fe-CsPbBr3 PNCs) under magnetic fields. The magnetic compositions in PNC tend to stabilize the spin polarized electrons within the PNC, mitigate the recombination of photo-excited electrons and enhance the redox reaction for photocatalytic CO2 reduction. The synergistic effects of magnetic element doping and the application of magnetic fields resulted in a photocatalytic CO2 reduction of 133.04 g−1, which is 1.68-fold increase compared to the Fe-PNC without a magnetic field. This work provides a simple and environmentally friendly approach to CO2 reduction based on PNCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI