已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Forecasting and early warning of shield tunnelling-induced ground collapse in rock-soil interface mixed ground using multivariate data fusion and Catastrophe Theory

量子隧道 护盾 地质学 突变理论 岩土工程 多元统计 统计 数学 物理 岩石学 凝聚态物理
作者
Long-Chuan Deng,Wei Zhang,Lu Deng,Yehui Shi,Jingxin Zi,He Xu,Hong‐Hu Zhu
出处
期刊:Engineering Geology [Elsevier]
卷期号:335: 107548-107548
标识
DOI:10.1016/j.enggeo.2024.107548
摘要

The high spatial variability of the rock-soil interface (RSI) in complex geological conditions introduces strong uncertainties in both subsurface stratigraphy and geotechnical properties. Inaccurate interpretation of such uncertainties during engineering geology investigations increases the geohazard risk of excessive surface settlement or even severe catastrophic ground collapse when shield machines are excavating in RSI mixed ground. Prediction and early warning of excessive surface settlement are necessary measures to address such a risk; however, unavoidable drawbacks such as overfitting, insufficient accuracy, and ineffectiveness remain in existing prediction models and early warning algorithms and have posed significant challenges. In this study, a novel framework using both a multivariate data fusion prediction model and a dynamic early warning algorithm was developed for forecasting and early warning of ground collapse during shield tunnelling in RSI mixed ground. The prediction model is the Differential Evolutionary Optimized Quadratic Taylor Series Extended Kalman Filter (DEQT-EKF); the early warning algorithm is based on Catastrophe Theory and uses the Gradient Ratio (GR) criterion to identify catastrophic singularities. The practicality and accuracy of the framework are well verified by a subway shield tunnelling-induced ground collapse incident in East China with complex RSI mixed ground conditions. The prediction results are compared with the surface settlement measurements and good agreement is obtained, indicating that the DEQT-EKF model can achieve satisfactory accuracy in predicting excessive settlement. The use of the GR criterion can trigger the early warning one time step before the ground collapse event, indicating that it is a competent and practical early warning strategy for shield tunnelling-induced ground collapse. The framework has the potential to significantly reduce the risk of ground collapse caused by geological uncertainties when constructing shield tunnels through complex ground conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林林总总发布了新的文献求助10
2秒前
凶狠的猎豹完成签到,获得积分10
4秒前
小弟朱生完成签到,获得积分10
8秒前
10秒前
练习者完成签到,获得积分10
10秒前
ZhangDaying完成签到 ,获得积分10
10秒前
科研通AI2S应助zhong采纳,获得10
13秒前
宇宇完成签到 ,获得积分10
15秒前
小西完成签到 ,获得积分10
17秒前
17秒前
pterionGao完成签到 ,获得积分10
18秒前
左右逢我完成签到 ,获得积分10
20秒前
傲娇而又骄傲完成签到 ,获得积分10
20秒前
冷静的莞完成签到 ,获得积分10
23秒前
雯小瑾完成签到 ,获得积分10
24秒前
李健应助林林总总采纳,获得10
25秒前
26秒前
26秒前
小丛雨完成签到,获得积分10
27秒前
rainbow完成签到 ,获得积分10
27秒前
迅速的念芹完成签到 ,获得积分10
27秒前
32秒前
32秒前
iNk应助Jomusha采纳,获得20
32秒前
橘艾完成签到 ,获得积分10
33秒前
包容的剑完成签到 ,获得积分10
34秒前
外向的斑马完成签到 ,获得积分10
34秒前
35秒前
36秒前
小林同学0219完成签到 ,获得积分10
39秒前
海阔天空完成签到 ,获得积分20
40秒前
40秒前
天天天才完成签到,获得积分10
41秒前
希望天下0贩的0应助zhong采纳,获得10
43秒前
李白白白完成签到,获得积分10
44秒前
人文完成签到 ,获得积分10
44秒前
50秒前
NN123完成签到,获得积分10
51秒前
longjiafang完成签到 ,获得积分10
52秒前
54秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162132
求助须知:如何正确求助?哪些是违规求助? 2813218
关于积分的说明 7899319
捐赠科研通 2472386
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142