Forecasting and early warning of shield tunnelling-induced ground collapse in rock-soil interface mixed ground using multivariate data fusion and Catastrophe Theory

量子隧道 护盾 地质学 突变理论 岩土工程 多元统计 统计 数学 物理 岩石学 凝聚态物理
作者
Long-Chuan Deng,Wei Zhang,Lu Deng,Yehui Shi,Jingxin Zi,He Xu,Hong‐Hu Zhu
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:335: 107548-107548
标识
DOI:10.1016/j.enggeo.2024.107548
摘要

The high spatial variability of the rock-soil interface (RSI) in complex geological conditions introduces strong uncertainties in both subsurface stratigraphy and geotechnical properties. Inaccurate interpretation of such uncertainties during engineering geology investigations increases the geohazard risk of excessive surface settlement or even severe catastrophic ground collapse when shield machines are excavating in RSI mixed ground. Prediction and early warning of excessive surface settlement are necessary measures to address such a risk; however, unavoidable drawbacks such as overfitting, insufficient accuracy, and ineffectiveness remain in existing prediction models and early warning algorithms and have posed significant challenges. In this study, a novel framework using both a multivariate data fusion prediction model and a dynamic early warning algorithm was developed for forecasting and early warning of ground collapse during shield tunnelling in RSI mixed ground. The prediction model is the Differential Evolutionary Optimized Quadratic Taylor Series Extended Kalman Filter (DEQT-EKF); the early warning algorithm is based on Catastrophe Theory and uses the Gradient Ratio (GR) criterion to identify catastrophic singularities. The practicality and accuracy of the framework are well verified by a subway shield tunnelling-induced ground collapse incident in East China with complex RSI mixed ground conditions. The prediction results are compared with the surface settlement measurements and good agreement is obtained, indicating that the DEQT-EKF model can achieve satisfactory accuracy in predicting excessive settlement. The use of the GR criterion can trigger the early warning one time step before the ground collapse event, indicating that it is a competent and practical early warning strategy for shield tunnelling-induced ground collapse. The framework has the potential to significantly reduce the risk of ground collapse caused by geological uncertainties when constructing shield tunnels through complex ground conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
零点起步完成签到,获得积分10
2秒前
小黑爱搞科研完成签到,获得积分20
2秒前
zhaopeipei关注了科研通微信公众号
2秒前
2秒前
YapengWang完成签到,获得积分10
4秒前
6秒前
9C完成签到,获得积分10
6秒前
芭芭拉发布了新的文献求助10
7秒前
8秒前
旅行的小七仔完成签到 ,获得积分10
9秒前
FashionBoy应助yidiandian采纳,获得10
9秒前
10秒前
snoke完成签到,获得积分10
11秒前
11秒前
Theprisoners完成签到,获得积分10
12秒前
zhangyu应助飞云采纳,获得10
12秒前
Syx_rcees发布了新的文献求助10
13秒前
13秒前
13秒前
大模型应助绝情继父采纳,获得10
13秒前
orixero应助lyg616358001采纳,获得10
14秒前
14秒前
15秒前
15秒前
小马甲应助潇洒的平松采纳,获得10
15秒前
慕青应助SSY采纳,获得10
15秒前
wanci应助pluto采纳,获得10
15秒前
zzazz完成签到,获得积分10
16秒前
流川封发布了新的文献求助10
16秒前
17秒前
张文懿发布了新的文献求助10
18秒前
YapengWang发布了新的文献求助10
18秒前
yuan发布了新的文献求助20
18秒前
tuanheqi发布了新的文献求助20
18秒前
yinxx完成签到,获得积分10
19秒前
klpkyx发布了新的文献求助10
19秒前
安静黄豆发布了新的文献求助10
19秒前
梦红尘完成签到,获得积分10
19秒前
绿海发布了新的文献求助30
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020