An audio-semantic multimodal model for automatic obstructive sleep Apnea-Hypopnea Syndrome classification via multi-feature analysis of snoring sounds

阻塞性睡眠呼吸暂停 呼吸不足 多导睡眠图 医学 计算机科学 睡眠呼吸暂停 呼吸 呼吸音 呼吸暂停 语音识别 物理医学与康复 心脏病学 内科学 麻醉 哮喘
作者
Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:18
标识
DOI:10.3389/fnins.2024.1336307
摘要

Introduction Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a common sleep-related breathing disorder that significantly impacts the daily lives of patients. Currently, the diagnosis of OSAHS relies on various physiological signal monitoring devices, requiring a comprehensive Polysomnography (PSG). However, this invasive diagnostic method faces challenges such as data fluctuation and high costs. To address these challenges, we propose a novel data-driven Audio-Semantic Multi-Modal model for OSAHS severity classification (i.e., ASMM-OSA) based on patient snoring sound characteristics. Methods In light of the correlation between the acoustic attributes of a patient's snoring patterns and their episodes of breathing disorders, we utilize the patient's sleep audio recordings as an initial screening modality. We analyze the audio features of snoring sounds during the night for subjects suspected of having OSAHS. Audio features were augmented via PubMedBERT to enrich their diversity and detail and subsequently classified for OSAHS severity using XGBoost based on the number of sleep apnea events. Results Experimental results using the OSAHS dataset from a collaborative university hospital demonstrate that our ASMM-OSA audio-semantic multimodal model achieves a diagnostic level in automatically identifying sleep apnea events and classifying the four-class severity (normal, mild, moderate, and severe) of OSAHS. Discussion Our proposed model promises new perspectives for non-invasive OSAHS diagnosis, potentially reducing costs and enhancing patient quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
lijunlhc完成签到,获得积分10
4秒前
蜡笔不小心完成签到,获得积分10
5秒前
Aja Wu完成签到,获得积分10
5秒前
英俊的铭应助DJDJ采纳,获得10
6秒前
7秒前
Akim应助Sun采纳,获得10
8秒前
9秒前
明理的曼凡给务实的菓的求助进行了留言
9秒前
12秒前
魔法师完成签到,获得积分0
12秒前
13秒前
开心绫完成签到,获得积分10
14秒前
14秒前
科研小白发布了新的文献求助10
14秒前
Banana完成签到,获得积分10
16秒前
无花果应助戴汪汪采纳,获得10
17秒前
科研小白完成签到,获得积分10
18秒前
cc完成签到,获得积分10
18秒前
18秒前
DJDJ发布了新的文献求助10
19秒前
搜集达人应助坚定的天曼采纳,获得10
19秒前
花道完成签到,获得积分10
19秒前
20秒前
小马甲应助壮观的远侵采纳,获得10
21秒前
21秒前
SciGPT应助六五采纳,获得10
22秒前
23秒前
所所应助cc采纳,获得10
23秒前
斯文败类应助小王采纳,获得10
23秒前
花道发布了新的文献求助30
23秒前
善良的老三完成签到,获得积分10
24秒前
12356完成签到 ,获得积分10
24秒前
行者完成签到,获得积分10
24秒前
25秒前
powfu发布了新的文献求助10
26秒前
SebastianW发布了新的文献求助10
26秒前
utgu完成签到,获得积分10
26秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712