An audio-semantic multimodal model for automatic obstructive sleep Apnea-Hypopnea Syndrome classification via multi-feature analysis of snoring sounds

阻塞性睡眠呼吸暂停 呼吸不足 多导睡眠图 医学 计算机科学 睡眠呼吸暂停 呼吸 呼吸音 呼吸暂停 语音识别 物理医学与康复 心脏病学 内科学 麻醉 哮喘
作者
Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:18
标识
DOI:10.3389/fnins.2024.1336307
摘要

Introduction Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a common sleep-related breathing disorder that significantly impacts the daily lives of patients. Currently, the diagnosis of OSAHS relies on various physiological signal monitoring devices, requiring a comprehensive Polysomnography (PSG). However, this invasive diagnostic method faces challenges such as data fluctuation and high costs. To address these challenges, we propose a novel data-driven Audio-Semantic Multi-Modal model for OSAHS severity classification (i.e., ASMM-OSA) based on patient snoring sound characteristics. Methods In light of the correlation between the acoustic attributes of a patient's snoring patterns and their episodes of breathing disorders, we utilize the patient's sleep audio recordings as an initial screening modality. We analyze the audio features of snoring sounds during the night for subjects suspected of having OSAHS. Audio features were augmented via PubMedBERT to enrich their diversity and detail and subsequently classified for OSAHS severity using XGBoost based on the number of sleep apnea events. Results Experimental results using the OSAHS dataset from a collaborative university hospital demonstrate that our ASMM-OSA audio-semantic multimodal model achieves a diagnostic level in automatically identifying sleep apnea events and classifying the four-class severity (normal, mild, moderate, and severe) of OSAHS. Discussion Our proposed model promises new perspectives for non-invasive OSAHS diagnosis, potentially reducing costs and enhancing patient quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满山兰完成签到,获得积分10
刚刚
1秒前
Druid完成签到,获得积分10
1秒前
科研通AI6应助青年才俊采纳,获得20
1秒前
科研通AI6应助青年才俊采纳,获得20
2秒前
CipherSage应助青年才俊采纳,获得10
2秒前
科研通AI6应助青年才俊采纳,获得10
2秒前
隐形曼青应助青年才俊采纳,获得10
2秒前
科研通AI6应助青年才俊采纳,获得10
2秒前
汉堡包应助青年才俊采纳,获得10
2秒前
科研通AI6应助青年才俊采纳,获得10
2秒前
小瑜发布了新的文献求助10
3秒前
李x发布了新的文献求助10
3秒前
ColinWine完成签到,获得积分10
4秒前
baolong发布了新的文献求助10
4秒前
顶天立地发布了新的文献求助10
4秒前
醉熏的灵完成签到,获得积分10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
陈末应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
SciGPT应助科研通管家采纳,获得10
6秒前
竹音完成签到,获得积分10
6秒前
拉长的念露完成签到,获得积分10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
YBY完成签到,获得积分10
6秒前
余红完成签到,获得积分10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
hzauhzau完成签到 ,获得积分10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
comma发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439360
求助须知:如何正确求助?哪些是违规求助? 4550482
关于积分的说明 14224867
捐赠科研通 4471458
什么是DOI,文献DOI怎么找? 2450361
邀请新用户注册赠送积分活动 1441216
关于科研通互助平台的介绍 1417865