An audio-semantic multimodal model for automatic obstructive sleep Apnea-Hypopnea Syndrome classification via multi-feature analysis of snoring sounds

阻塞性睡眠呼吸暂停 呼吸不足 多导睡眠图 医学 计算机科学 睡眠呼吸暂停 呼吸 呼吸音 呼吸暂停 语音识别 物理医学与康复 心脏病学 内科学 麻醉 哮喘
作者
Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu,Xihe Qiu
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:18
标识
DOI:10.3389/fnins.2024.1336307
摘要

Introduction Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a common sleep-related breathing disorder that significantly impacts the daily lives of patients. Currently, the diagnosis of OSAHS relies on various physiological signal monitoring devices, requiring a comprehensive Polysomnography (PSG). However, this invasive diagnostic method faces challenges such as data fluctuation and high costs. To address these challenges, we propose a novel data-driven Audio-Semantic Multi-Modal model for OSAHS severity classification (i.e., ASMM-OSA) based on patient snoring sound characteristics. Methods In light of the correlation between the acoustic attributes of a patient's snoring patterns and their episodes of breathing disorders, we utilize the patient's sleep audio recordings as an initial screening modality. We analyze the audio features of snoring sounds during the night for subjects suspected of having OSAHS. Audio features were augmented via PubMedBERT to enrich their diversity and detail and subsequently classified for OSAHS severity using XGBoost based on the number of sleep apnea events. Results Experimental results using the OSAHS dataset from a collaborative university hospital demonstrate that our ASMM-OSA audio-semantic multimodal model achieves a diagnostic level in automatically identifying sleep apnea events and classifying the four-class severity (normal, mild, moderate, and severe) of OSAHS. Discussion Our proposed model promises new perspectives for non-invasive OSAHS diagnosis, potentially reducing costs and enhancing patient quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘴嘴完成签到,获得积分10
刚刚
FashionBoy应助自觉柠檬采纳,获得10
刚刚
机灵夏云完成签到,获得积分10
1秒前
开放身影完成签到,获得积分10
1秒前
王盼完成签到 ,获得积分10
2秒前
2秒前
大好好发布了新的文献求助10
2秒前
xzg111完成签到,获得积分10
3秒前
myangm完成签到,获得积分10
3秒前
3秒前
3秒前
倪妮完成签到 ,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
朱朱应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
浮游应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
loewy发布了新的文献求助10
5秒前
TYMY应助科研通管家采纳,获得20
5秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Rsoup发布了新的文献求助10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
upup应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
脑洞疼应助科研通管家采纳,获得30
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419966
求助须知:如何正确求助?哪些是违规求助? 4535178
关于积分的说明 14148588
捐赠科研通 4451975
什么是DOI,文献DOI怎么找? 2441982
邀请新用户注册赠送积分活动 1433488
关于科研通互助平台的介绍 1410732