A Review of Data Mining Strategies by Data Type, with a Focus on Construction Processes and Health and Safety Management

光学(聚焦) 数据管理 数据科学 数据挖掘 风险分析(工程) 业务 计算机科学 光学 物理
作者
Antonella Pireddu,Angelico Bedini,Mara Lombardi,Angelo Luigi Camillo Ciribini,Davide Berardi
标识
DOI:10.20944/preprints202405.0322.v1
摘要

Increasingly, information technology facilitates the storage and management of data useful for risk analysis and event prediction. Studies on data extraction related to occupational health and safety are increasingly available; however, due to its variability, the construction sector warrants special attention. This review is conducted under the research programmes of the National Institute for Occupational Accident Insurance (Inail). Objectives: The research question focuses on identifying which data mining (DM) methods, among supervised, unsupervised, and others, are most appropriate to be applied to certain investigation objectives, types, and sources of data, as defined by the authors. Methods: Scopus and ProQuest were the main sources from which we extracted studies in the field of construction, published between 2014 and 2023. The eligibility criteria applied in the selection of studies, were based on the Preferred Reporting Items for Systematic Review and meta-analysis (PRISMA). For exploratory purposes, we applied hierarchical clustering, while for in-depth analysis, we use principal component analysis (PCA) and meta-analysis. Results: The search strategy based on the PRISMA eligibility criteria, provided us with 61 out of 2,234 potential articles, 202 observation, 91 methodologies, 4 survey purposes, 3 data sources, 7 data types, and 3 resource type. Cluster analysis and PCA organized the information included in the paper dataset into two dimensions and labels: "supervised methods, institutional dataset, and predictive and classificatory purposes" (correlation 0.97÷8.18E-01; p-value 7.67E-55÷1.28E-22) and the second, Dim2 "not-supervised methods; project, simulation, literature, text data; monitoring, decision-making processes; machinery and environment" (corr. 0.84÷0.47; p-value 5.79E-25÷3.59E-06). We answered the research question regarding which method, among supervised, unsupervised, or other, is most suitable for application to data in the construction industry. Conclusions: The meta-analysis provided an overall estimate of the better effectiveness of supervised methods (Odds Ratio = 0.71, Confidence Interval 0.53÷0.96) compared to not-supervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助林希希采纳,获得10
1秒前
sususuper发布了新的文献求助10
1秒前
123123发布了新的文献求助10
1秒前
贾舒涵发布了新的文献求助10
1秒前
雨天有伞完成签到,获得积分10
2秒前
无为应助美好眼神采纳,获得10
2秒前
科目三应助鱼鱼采纳,获得10
2秒前
3秒前
呵呵完成签到,获得积分10
3秒前
Raien发布了新的文献求助10
3秒前
3秒前
sss发布了新的文献求助10
4秒前
雨霁发布了新的文献求助30
4秒前
华仔应助power采纳,获得10
5秒前
可爱的函函应助甜甜映菡采纳,获得10
7秒前
研友_VZG7GZ应助Dudadadaa采纳,获得10
8秒前
8秒前
科研通AI2S应助雨下听风采纳,获得10
8秒前
Beyond完成签到,获得积分10
8秒前
9秒前
10秒前
12秒前
打打应助lee采纳,获得10
12秒前
Ava应助77采纳,获得30
13秒前
14秒前
btutou发布了新的文献求助10
14秒前
16秒前
16秒前
善良夜梅发布了新的文献求助10
16秒前
16秒前
17秒前
左丘丹烟完成签到,获得积分10
17秒前
英俊的铭应助三跳采纳,获得10
18秒前
18秒前
谨慎觅夏完成签到,获得积分10
18秒前
Jasper应助呆呆子采纳,获得10
19秒前
空想小捣蛋完成签到,获得积分10
20秒前
yyg应助跟我说晚安采纳,获得10
20秒前
852应助XXF采纳,获得10
20秒前
鱼鱼发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552503
求助须知:如何正确求助?哪些是违规求助? 3128579
关于积分的说明 9378740
捐赠科研通 2827750
什么是DOI,文献DOI怎么找? 1554537
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714980