A Low-Cost Self-Pumping Membraneless Thermally Regenerative Flow Battery for Small-Scale Waste Heat Recovery

电池(电) 余热回收装置 材料科学 环境科学 工艺工程 比例(比率) 流量(数学) 废物管理 化学工程 热力学 机械工程 热交换器 机械 功率(物理) 工程类 物理 量子力学
作者
Qiang Jiang,Yu Shi,Yichao An,Liang Zhang,Jun Li,Xun Zhu,Qiang Liao
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:63 (20): 8860-8867
标识
DOI:10.1021/acs.iecr.4c00549
摘要

The all-aqueous thermally regenerative battery has the advantages of high open-circuit voltage, high power density, and high Coulombic efficiency, providing a promising way for low-temperature waste heat recovery. In this study, a passive membraneless thermally regenerative flow battery driven by capillary force and gravity is proposed to reduce the cost of construction and operation. The feasibility of power generation and the influence of key parameters (height difference, support electrolyte concentration, etc.) on the battery performance are studied. The results showed that a laminar flow induced by a fiber-based microfluidic reactor could effectively separate the catholytes and anolytes, and the battery could achieve long-term power production and obtain a maximum power density of 15.2 mW cm–2. The performance of the battery first increased and then decreased with the inlet height, and the optimal height was 3 mm. This is mainly due to the fact that the inlet height affects the flow rate of the electrolyte, which affects the mass transfer and laminar flow effect in the porous electrode. Within a certain range, as the concentration of the supporting electrolyte increases, the conductivity of the electrolyte is significantly improved, although the flow rate decreases to a certain extent due to the increase in viscosity, resulting in a further improvement in the battery performance. Through the above optimization, the maximum power density of the battery obtained in this study is 24.9 mW cm–2, and the maximum theoretical thermal efficiency can reach 1.26% (the relative Carnot efficiency can reach 10.6%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
不做实验怎么能算摸鱼呢完成签到,获得积分10
1秒前
1秒前
kingkingmai完成签到,获得积分10
1秒前
爱笑的猪猪完成签到 ,获得积分10
2秒前
567发布了新的文献求助10
2秒前
春风知我意完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得30
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
简单人杰应助科研通管家采纳,获得20
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
langhai应助科研通管家采纳,获得10
3秒前
prosperp应助科研通管家采纳,获得30
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
bing应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
jingyu完成签到,获得积分10
3秒前
4秒前
斯文败类应助soso1010采纳,获得30
4秒前
令狐双发布了新的文献求助10
4秒前
4秒前
莫得感情完成签到 ,获得积分10
5秒前
5秒前
彭于彦祖应助FF采纳,获得30
7秒前
哈哈发布了新的文献求助10
7秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472