Chemical constituent characterization and determination of Quisqualis fructus based on UPLC-Q-TOF-MS and HPLC combined with fingerprint and chemometric analysis

高效液相色谱法 色谱法 指纹(计算) 化学计量学 化学 表征(材料科学) 材料科学 人工智能 计算机科学 纳米技术
作者
Lin Yang,Lei Dai,Weihan Qin,Yiwu Wang,Jianing Zhao,Shuxiang Pan,Dan He
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1418480
摘要

(QF) is a traditional Chinese medicine (TCM) that it has a long history in the therapeutic field of killing parasites, eliminating accumulation, and stopping diarrhea. However, the therapeutic material basis of QF is remaining ambiguous nowadays. The geographical origin differences of QF are also usually ignored in the process of medication. In this study, the alcohol-aqueous soluble constituents in QF from different origins were systematically characterized and accurately measured by ultra-high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and high-performance liquid chromatography (HPLC) respectively. Chemometric analysis was performed for origin differentiation and screening of potential quality marker (Q-marker). Finally, A total of 106 constituents were tentatively characterized in positive and negative ion modes, including 29 fatty acids, 26 organic acids, 11 amino acids and derivatives, 10 glycosides, 9 alkaloids and derivatives, and 21 other constituents. QF from different origins were effectively distinguished and 16 constituents were selected as the potential Q-markers subsequently. Four representative components (trigonelline, adenosine, ellagic acid, and 3,3'-di-O-methylellagic acid) in QF samples were simultaneously determined. HPLC fingerprint analysis indicated that the similarity between 16 batches of QF was in the range of 0.870-0.999. The above results provide some insights for the research on the pharmacodynamic constituents, quality control, and geographical discrimination of QF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是站长才怪应助谭谨川采纳,获得10
刚刚
1233发布了新的文献求助10
1秒前
bismarck7完成签到,获得积分10
1秒前
1秒前
1秒前
田様应助淡淡采白采纳,获得10
1秒前
赖道之发布了新的文献求助10
2秒前
calbee完成签到,获得积分10
2秒前
2秒前
和谐白云完成签到,获得积分10
3秒前
3秒前
3秒前
王w发布了新的文献求助10
4秒前
yyyyy完成签到,获得积分10
5秒前
5秒前
大侠发布了新的文献求助10
5秒前
魁梧的乐天完成签到,获得积分20
5秒前
冯度翩翩完成签到,获得积分10
6秒前
科研通AI2S应助satchzhao采纳,获得10
6秒前
jijizz完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
小马甲应助ChiDaiOLD采纳,获得10
7秒前
7秒前
鳗鱼灵寒发布了新的文献求助10
8秒前
shatang发布了新的文献求助10
8秒前
lesyeuxdexx完成签到 ,获得积分10
10秒前
11秒前
程琳完成签到,获得积分20
12秒前
13秒前
卓哥发布了新的文献求助10
13秒前
科研通AI5应助sansan采纳,获得10
14秒前
14秒前
14秒前
脑洞疼应助杰森斯坦虎采纳,获得10
14秒前
16秒前
17秒前
研友_QQC完成签到,获得积分10
17秒前
NeuroWhite完成签到,获得积分10
17秒前
17秒前
搜索v完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808