A multimodal integration pipeline for accurate diagnosis, pathogen identification, and prognosis prediction of pulmonary infections

鉴定(生物学) 管道(软件) 病菌 医学 计算生物学 计算机科学 重症监护医学 生物 免疫学 植物 程序设计语言
作者
Jun Shao,Jiechao Ma,Yizhou Yu,Shu Zhang,Yan Wang,Weimin Li,Chengdi Wang
出处
期刊:The Innovation [Elsevier]
卷期号:5 (4): 100648-100648 被引量:1
标识
DOI:10.1016/j.xinn.2024.100648
摘要

Pulmonary infections pose formidable challenges in clinical settings with high mortality rates across all age groups worldwide. Accurate diagnosis and early intervention are crucial to improve patient outcomes. Artificial intelligence (AI) has the capability to mine imaging features specific to different pathogens and fuse multimodal features to reach a synergistic diagnosis, enabling more precise investigation and individualized clinical management. In this study, we successfully developed a multimodal integration (MMI) pipeline to differentiate among bacterial, fungal, and viral pneumonia and pulmonary tuberculosis based on a real-world dataset of 24,107 patients. The area under the curve (AUC) of the MMI system comprising clinical text and computed tomography (CT) image scans yielded 0.910 (95% confidence interval [CI]: 0.904-0.916) and 0.887 (95% CI: 0.867-0.909) in the internal and external testing datasets respectively, which were comparable to those of experienced physicians. Furthermore, the MMI system was utilized to rapidly differentiate between viral subtypes with a mean AUC of 0.822 (95% CI: 0.805-0.837) and bacterial subtypes with a mean AUC of 0.803 (95% CI: 0.775-0.830). Here, the MMI system harbors the potential to guide tailored medication recommendations, thus mitigating the risk of antibiotic misuse. Additionally, the integration of multimodal factors in the AI-driven system also provided an evident advantage in predicting risks of developing critical illness, contributing to more informed clinical decision-making. To revolutionize medical care, embracing multimodal AI tools in pulmonary infections will pave the way to further facilitate early intervention and precise management in the foreseeable future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助听话的梦之采纳,获得10
刚刚
1秒前
小二郎应助zz采纳,获得10
3秒前
落井下石的哲学家完成签到,获得积分10
4秒前
ding应助Ade采纳,获得10
4秒前
quzhenzxxx完成签到 ,获得积分10
5秒前
科研通AI2S应助FartKing采纳,获得30
6秒前
7秒前
9秒前
luckysame完成签到,获得积分10
10秒前
11秒前
13秒前
幼萱完成签到,获得积分10
13秒前
良辰发布了新的文献求助10
13秒前
TT2022发布了新的文献求助10
14秒前
14秒前
tmrrr完成签到,获得积分10
14秒前
XIN完成签到,获得积分20
14秒前
11_aa完成签到,获得积分10
15秒前
liulongchao发布了新的文献求助10
15秒前
祺祺关注了科研通微信公众号
15秒前
15秒前
zy发布了新的文献求助10
16秒前
1111A完成签到,获得积分10
18秒前
sukasuka发布了新的文献求助10
18秒前
19秒前
所所应助王幻露采纳,获得10
20秒前
zy完成签到,获得积分10
22秒前
光电很亮完成签到,获得积分10
22秒前
传奇3应助lilin采纳,获得10
24秒前
25秒前
Wwhy发布了新的文献求助10
26秒前
28秒前
30秒前
李半斤发布了新的文献求助10
30秒前
31秒前
33秒前
科研助手发布了新的文献求助10
34秒前
大蒜味酸奶钊完成签到 ,获得积分10
34秒前
赵欣发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809513
关于积分的说明 7882468
捐赠科研通 2468017
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943