A multimodal integration pipeline for accurate diagnosis, pathogen identification, and prognosis prediction of pulmonary infections

鉴定(生物学) 管道(软件) 病菌 医学 计算生物学 计算机科学 重症监护医学 生物 免疫学 植物 程序设计语言
作者
Jun Shao,Jiechao Ma,Yizhou Yu,Shu Zhang,Wenyang Wang,Weimin Li,Chengdi Wang
出处
期刊:The Innovation [Elsevier]
卷期号:5 (4): 100648-100648 被引量:3
标识
DOI:10.1016/j.xinn.2024.100648
摘要

Pulmonary infections pose formidable challenges in clinical settings with high mortality rates across all age groups worldwide. Accurate diagnosis and early intervention are crucial to improve patient outcomes. Artificial intelligence (AI) has the capability to mine imaging features specific to different pathogens and fuse multimodal features to reach a synergistic diagnosis, enabling more precise investigation and individualized clinical management. In this study, we successfully developed a multimodal integration (MMI) pipeline to differentiate among bacterial, fungal, and viral pneumonia and pulmonary tuberculosis based on a real-world dataset of 24,107 patients. The area under the curve (AUC) of the MMI system comprising clinical text and computed tomography (CT) image scans yielded 0.910 (95% confidence interval [CI]: 0.904-0.916) and 0.887 (95% CI: 0.867-0.909) in the internal and external testing datasets respectively, which were comparable to those of experienced physicians. Furthermore, the MMI system was utilized to rapidly differentiate between viral subtypes with a mean AUC of 0.822 (95% CI: 0.805-0.837) and bacterial subtypes with a mean AUC of 0.803 (95% CI: 0.775-0.830). Here, the MMI system harbors the potential to guide tailored medication recommendations, thus mitigating the risk of antibiotic misuse. Additionally, the integration of multimodal factors in the AI-driven system also provided an evident advantage in predicting risks of developing critical illness, contributing to more informed clinical decision-making. To revolutionize medical care, embracing multimodal AI tools in pulmonary infections will pave the way to further facilitate early intervention and precise management in the foreseeable future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情若魔完成签到,获得积分10
1秒前
XM完成签到,获得积分10
1秒前
1秒前
LQW发布了新的文献求助30
1秒前
大个应助Rrr采纳,获得10
1秒前
2秒前
3秒前
3秒前
5秒前
zfy完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
7秒前
w17638619025完成签到 ,获得积分20
8秒前
撒上咖啡应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
9秒前
菠萝吹雪应助科研通管家采纳,获得30
9秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
西内!卡Q因完成签到,获得积分10
10秒前
我是125应助www采纳,获得10
10秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
10秒前
Zzzzzzzzzzz发布了新的文献求助10
10秒前
长情若魔发布了新的文献求助10
10秒前
酷酷酷完成签到,获得积分10
11秒前
11秒前
BaekHyun发布了新的文献求助10
12秒前
xuex1发布了新的文献求助10
12秒前
孙皓然完成签到 ,获得积分10
13秒前
15秒前
15秒前
17秒前
逐风给逐风的求助进行了留言
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808