A multimodal integration pipeline for accurate diagnosis, pathogen identification, and prognosis prediction of pulmonary infections

鉴定(生物学) 管道(软件) 病菌 医学 计算生物学 计算机科学 重症监护医学 生物 免疫学 植物 程序设计语言
作者
Jun Shao,Jiechao Ma,Yizhou Yu,Shu Zhang,Wenyang Wang,Weimin Li,Chengdi Wang
出处
期刊:The Innovation [Elsevier BV]
卷期号:5 (4): 100648-100648 被引量:4
标识
DOI:10.1016/j.xinn.2024.100648
摘要

Pulmonary infections pose formidable challenges in clinical settings with high mortality rates across all age groups worldwide. Accurate diagnosis and early intervention are crucial to improve patient outcomes. Artificial intelligence (AI) has the capability to mine imaging features specific to different pathogens and fuse multimodal features to reach a synergistic diagnosis, enabling more precise investigation and individualized clinical management. In this study, we successfully developed a multimodal integration (MMI) pipeline to differentiate among bacterial, fungal, and viral pneumonia and pulmonary tuberculosis based on a real-world dataset of 24,107 patients. The area under the curve (AUC) of the MMI system comprising clinical text and computed tomography (CT) image scans yielded 0.910 (95% confidence interval [CI]: 0.904-0.916) and 0.887 (95% CI: 0.867-0.909) in the internal and external testing datasets respectively, which were comparable to those of experienced physicians. Furthermore, the MMI system was utilized to rapidly differentiate between viral subtypes with a mean AUC of 0.822 (95% CI: 0.805-0.837) and bacterial subtypes with a mean AUC of 0.803 (95% CI: 0.775-0.830). Here, the MMI system harbors the potential to guide tailored medication recommendations, thus mitigating the risk of antibiotic misuse. Additionally, the integration of multimodal factors in the AI-driven system also provided an evident advantage in predicting risks of developing critical illness, contributing to more informed clinical decision-making. To revolutionize medical care, embracing multimodal AI tools in pulmonary infections will pave the way to further facilitate early intervention and precise management in the foreseeable future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助cccr02采纳,获得10
3秒前
Glileo发布了新的文献求助10
3秒前
qqqq22完成签到,获得积分10
5秒前
135完成签到 ,获得积分10
7秒前
7秒前
Jasper应助JIE采纳,获得10
8秒前
sger发布了新的文献求助30
9秒前
伊叶之丘完成签到 ,获得积分10
11秒前
12秒前
无花果应助111采纳,获得10
12秒前
13秒前
苫糖完成签到,获得积分10
15秒前
Ava应助怕孤单的绿柏采纳,获得10
15秒前
iNk应助nicheng采纳,获得10
15秒前
16秒前
lslslslsllss发布了新的文献求助20
17秒前
sger完成签到,获得积分10
18秒前
DraGon发布了新的文献求助10
18秒前
Yeah_椰椰发布了新的文献求助10
18秒前
吴壮完成签到,获得积分10
18秒前
19秒前
潘fujun完成签到 ,获得积分10
20秒前
21秒前
吴壮发布了新的文献求助10
22秒前
22秒前
24秒前
冲浪男孩226完成签到 ,获得积分10
24秒前
JIE发布了新的文献求助10
25秒前
程大海完成签到,获得积分10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
天天快乐应助科研通管家采纳,获得10
26秒前
竹筏过海应助科研通管家采纳,获得30
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
ED应助科研通管家采纳,获得10
26秒前
竹筏过海应助科研通管家采纳,获得30
26秒前
hoijuon应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得30
27秒前
所所应助科研通管家采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966069
求助须知:如何正确求助?哪些是违规求助? 3511435
关于积分的说明 11158171
捐赠科研通 3246056
什么是DOI,文献DOI怎么找? 1793288
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311