清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A multimodal integration pipeline for accurate diagnosis, pathogen identification, and prognosis prediction of pulmonary infections

鉴定(生物学) 管道(软件) 病菌 医学 计算生物学 计算机科学 重症监护医学 生物 免疫学 植物 程序设计语言
作者
Jun Shao,Jiechao Ma,Yizhou Yu,Shu Zhang,Wenyang Wang,Weimin Li,Chengdi Wang
出处
期刊:The Innovation [Elsevier]
卷期号:5 (4): 100648-100648 被引量:17
标识
DOI:10.1016/j.xinn.2024.100648
摘要

Pulmonary infections pose formidable challenges in clinical settings with high mortality rates across all age groups worldwide. Accurate diagnosis and early intervention are crucial to improve patient outcomes. Artificial intelligence (AI) has the capability to mine imaging features specific to different pathogens and fuse multimodal features to reach a synergistic diagnosis, enabling more precise investigation and individualized clinical management. In this study, we successfully developed a multimodal integration (MMI) pipeline to differentiate among bacterial, fungal, and viral pneumonia and pulmonary tuberculosis based on a real-world dataset of 24,107 patients. The area under the curve (AUC) of the MMI system comprising clinical text and computed tomography (CT) image scans yielded 0.910 (95% confidence interval [CI]: 0.904-0.916) and 0.887 (95% CI: 0.867-0.909) in the internal and external testing datasets respectively, which were comparable to those of experienced physicians. Furthermore, the MMI system was utilized to rapidly differentiate between viral subtypes with a mean AUC of 0.822 (95% CI: 0.805-0.837) and bacterial subtypes with a mean AUC of 0.803 (95% CI: 0.775-0.830). Here, the MMI system harbors the potential to guide tailored medication recommendations, thus mitigating the risk of antibiotic misuse. Additionally, the integration of multimodal factors in the AI-driven system also provided an evident advantage in predicting risks of developing critical illness, contributing to more informed clinical decision-making. To revolutionize medical care, embracing multimodal AI tools in pulmonary infections will pave the way to further facilitate early intervention and precise management in the foreseeable future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
balko完成签到,获得积分10
11秒前
13秒前
16秒前
16秒前
Wenqi发布了新的文献求助10
17秒前
58秒前
58秒前
1分钟前
张晟源发布了新的文献求助30
1分钟前
1分钟前
1分钟前
敏敏9813发布了新的文献求助10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
科研通AI6应助宝宝爱洗脚采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
Zoe发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助20
5分钟前
Zoe完成签到,获得积分10
5分钟前
5分钟前
5分钟前
虚幻念寒完成签到 ,获得积分10
6分钟前
卢莹完成签到,获得积分10
6分钟前
木乙完成签到 ,获得积分10
6分钟前
大医仁心完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389135
捐赠科研通 4512388
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459119
关于科研通互助平台的介绍 1432605