Diagnostics for Imbalance on the Convective Scale

对流 比例(比率) 气候学 环境科学 气象学 地质学 大气科学 地理 地图学
作者
Theresa Diefenbach,Leonhard Scheck,Martin Weißmann,George C. Craig
出处
期刊:Monthly Weather Review [American Meteorological Society]
标识
DOI:10.1175/mwr-d-23-0291.1
摘要

Abstract The analyses produced by a data assimilation system may be unbalanced, that is dynamically inconsistent with the forecasting model, leading to noisy forecasts and reduced skill. While there are effective procedures to reduce synoptic-scale imbalance, the situation on the convective scale is less clear because the flowon this scale is strongly divergent and non-hydrostatic. In this studywe compare three measures of imbalance relevant to convective-scale data assimilation: (i) surface pressure tendencies, (ii) vertical velocity variance in the vicinity of convective clouds, and (iii) departures from the vertical velocity prescribed by the weak temperature gradient (WTG) approximation. These are applied in a numerical weather prediction system, with three different data assimilation algorithms: 1. Latent Heat Nudging (LHN), 2. Local Ensemble Transform Kalman Filter (LETKF), and 3. LETKF in combination with incremental analysis updates (IAU). Results indicate that surface pressure tendency diagnoses a different type of imbalance than the vertical velocity variance and theWTG departure. The LETKF induces a spike in surface pressure tendencies, with a large-scale spatial pattern that is not clearly related to the precipitation pattern. This anomaly is notably reduced by the IAU. LHN does not generate a pronounced signal in the surface pressure, but produces the most imbalance in the other two measures. The imbalances measured by the partitioned vertical velocity variance andWTG departures are similar, and closely coupled to the convective precipitation. Between these two measures, the WTG departure has the advantage of being simpler and more economical to compute.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snowpie完成签到 ,获得积分10
1秒前
科研通AI6应助Scout采纳,获得10
2秒前
profit完成签到 ,获得积分10
2秒前
2秒前
chencheng发布了新的文献求助10
3秒前
3秒前
春水梨完成签到 ,获得积分10
3秒前
Owen应助Dabaozi采纳,获得10
3秒前
古月完成签到,获得积分10
3秒前
沧海泪发布了新的文献求助10
3秒前
star应助危机的雍采纳,获得10
5秒前
5秒前
xutingfeng发布了新的文献求助10
5秒前
小巧的中蓝完成签到 ,获得积分10
6秒前
zzzzzzzzzzzz完成签到,获得积分10
6秒前
领导范儿应助生动路人采纳,获得10
6秒前
春水梨关注了科研通微信公众号
7秒前
9秒前
斯文败类应助布小丁采纳,获得10
9秒前
Lucas应助ccc采纳,获得10
9秒前
10秒前
liiy完成签到,获得积分10
10秒前
12秒前
俭朴的雨梅完成签到,获得积分10
13秒前
14秒前
桐桐应助危机的雍采纳,获得30
14秒前
15秒前
16秒前
苦行僧完成签到,获得积分10
16秒前
16秒前
16秒前
情怀应助无情山水采纳,获得10
16秒前
16秒前
科研小白发布了新的文献求助10
17秒前
布丁完成签到,获得积分10
17秒前
麕麕完成签到 ,获得积分10
18秒前
Jessie发布了新的文献求助10
19秒前
如初发布了新的文献求助10
19秒前
20秒前
狄远山完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911582
求助须知:如何正确求助?哪些是违规求助? 4187043
关于积分的说明 13002331
捐赠科研通 3954873
什么是DOI,文献DOI怎么找? 2168482
邀请新用户注册赠送积分活动 1186950
关于科研通互助平台的介绍 1094256