Dynamic-guided Spatiotemporal Attention for Echocardiography Video Segmentation

计算机科学 分割 人工智能 计算机视觉 编码器 背景(考古学) 光流 模式识别(心理学) 古生物学 图像(数学) 生物 操作系统
作者
Jingyin Lin,Wende Xie,Kang Li,Huisi Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3843-3855 被引量:6
标识
DOI:10.1109/tmi.2024.3403687
摘要

Left ventricle (LV) endocardium segmentation in echocardiography video has received much attention as an important step in quantifying LV ejection fraction. Most existing methods are dedicated to exploiting temporal information on top of 2D convolutional networks. In addition to single appearance semantic learning, some research attempted to introduce motion cues through the optical flow estimation (OFE) task to enhance temporal consistency modeling. However, OFE in these methods is tightly coupled to LV endocardium segmentation, resulting in noisy inter-frame flow prediction, and post-optimization based on these flows accumulates errors. To address these drawbacks, we propose dynamic-guided spatiotemporal attention (DSA) for semi-supervised echocardiography video segmentation. We first fine-tune the off-the-shelf OFE network RAFT on echocardiography data to provide dynamic information. Taking inter-frame flows as additional input, we use a dual-encoder structure to extract motion and appearance features separately. Based on the connection between dynamic continuity and semantic consistency, we propose a bilateral feature calibration module to enhance both features. For temporal consistency modeling, the DSA is proposed to aggregate neighboring frame context using deformable attention that is realized by offsets grid attention. Dynamic information is introduced into DSA through a bilateral offset estimation module to effectively combine with appearance semantics and predict attention offsets, thereby guiding semantic-based spatiotemporal attention. We evaluated our method on two popular echocardiography datasets, CAMUS and EchoNet-Dynamic, and achieved state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10完成签到,获得积分10
刚刚
爆米花应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
wlscj应助科研通管家采纳,获得20
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
3秒前
哈基米德应助科研通管家采纳,获得20
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
clark完成签到,获得积分10
3秒前
3秒前
3秒前
无花果应助羊觅夏采纳,获得10
3秒前
3秒前
bkagyin应助K. G.采纳,获得10
3秒前
子卿完成签到,获得积分10
4秒前
星星完成签到,获得积分10
4秒前
4秒前
MM完成签到,获得积分10
4秒前
zs发布了新的文献求助10
5秒前
Annnnnnn发布了新的文献求助10
5秒前
6秒前
整齐的傲之完成签到,获得积分10
6秒前
陈同学发布了新的文献求助10
7秒前
牙牙发布了新的文献求助10
8秒前
yuhui完成签到,获得积分10
8秒前
Guo完成签到 ,获得积分20
8秒前
隐形曼青应助小星星668采纳,获得10
8秒前
乐乐应助箫涵采纳,获得10
8秒前
8秒前
polarisier发布了新的文献求助10
8秒前
丘比特应助古朵采纳,获得10
8秒前
boli发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助szj采纳,获得30
9秒前
jiaminghao发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329293
求助须知:如何正确求助?哪些是违规求助? 4468822
关于积分的说明 13906962
捐赠科研通 4361865
什么是DOI,文献DOI怎么找? 2396049
邀请新用户注册赠送积分活动 1389427
关于科研通互助平台的介绍 1360272