Dynamic-guided Spatiotemporal Attention for Echocardiography Video Segmentation

计算机科学 分割 人工智能 计算机视觉 编码器 背景(考古学) 光流 模式识别(心理学) 生物 操作系统 图像(数学) 古生物学
作者
Jingyin Lin,Wende Xie,Kang Li,Huisi Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3843-3855 被引量:4
标识
DOI:10.1109/tmi.2024.3403687
摘要

Left ventricle (LV) endocardium segmentation in echocardiography video has received much attention as an important step in quantifying LV ejection fraction. Most existing methods are dedicated to exploiting temporal information on top of 2D convolutional networks. In addition to single appearance semantic learning, some research attempted to introduce motion cues through the optical flow estimation (OFE) task to enhance temporal consistency modeling. However, OFE in these methods is tightly coupled to LV endocardium segmentation, resulting in noisy inter-frame flow prediction, and post-optimization based on these flows accumulates errors. To address these drawbacks, we propose dynamic-guided spatiotemporal attention (DSA) for semi-supervised echocardiography video segmentation. We first fine-tune the off-the-shelf OFE network RAFT on echocardiography data to provide dynamic information. Taking inter-frame flows as additional input, we use a dual-encoder structure to extract motion and appearance features separately. Based on the connection between dynamic continuity and semantic consistency, we propose a bilateral feature calibration module to enhance both features. For temporal consistency modeling, the DSA is proposed to aggregate neighboring frame context using deformable attention that is realized by offsets grid attention. Dynamic information is introduced into DSA through a bilateral offset estimation module to effectively combine with appearance semantics and predict attention offsets, thereby guiding semantic-based spatiotemporal attention. We evaluated our method on two popular echocardiography datasets, CAMUS and EchoNet-Dynamic, and achieved state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗糕完成签到,获得积分20
1秒前
大模型应助自行设置采纳,获得10
1秒前
善学以致用应助道一采纳,获得10
1秒前
1秒前
Duha发布了新的文献求助10
1秒前
JamesPei应助小雨点采纳,获得10
1秒前
2秒前
王王会完成签到,获得积分10
2秒前
2秒前
2秒前
南宫冰夏发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
郭惠智完成签到,获得积分10
4秒前
仲半邪完成签到,获得积分10
5秒前
5秒前
xavier发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
7秒前
碗糕发布了新的文献求助30
8秒前
沉123发布了新的文献求助10
8秒前
orixero应助倩迷谜采纳,获得10
8秒前
9秒前
向上的小v完成签到 ,获得积分10
9秒前
SciGPT应助xy采纳,获得10
9秒前
2000dw完成签到,获得积分20
9秒前
谈理想发布了新的文献求助10
9秒前
勤奋尔冬完成签到 ,获得积分10
10秒前
10秒前
锅锅完成签到,获得积分10
10秒前
lilililili发布了新的文献求助10
10秒前
lx发布了新的文献求助10
11秒前
科目三应助不安的煜城采纳,获得30
11秒前
joshar发布了新的文献求助10
11秒前
jitianxing完成签到,获得积分10
12秒前
温谷完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271