Machine Learning in Electroconvulsive Therapy

电休克疗法 心理学 心理治疗师 精神科 精神分裂症(面向对象编程)
作者
Robert Lundin,Veronica Podence Falcao,Savani Kannangara,Charles W. Eakin,Moloud Abdar,John F. O'Neill,Abbas Khosravi,Harris A. Eyre,Saeid Nahavandi,Colleen Loo,Michael Berk
出处
期刊:Journal of Ect [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/yct.0000000000001009
摘要

Abstract Despite years of research, we are still not able to reliably predict who might benefit from electroconvulsive therapy (ECT) treatment. As we exhaust what is possible using traditional statistical analysis, ECT remains a good candidate for machine learning approaches due to the large data sets with data captured through electroencephalography (EEG) and other objective measures. A systematic review of 6 databases led to the full-text examination of 26 articles using machine learning approaches in examining data predicting response to ECT treatment. The identified articles used a wide variety of data types covering structural and functional imaging data (n = 15), clinical data (n = 5), a combination of clinical and imaging data (n = 2), EEG (n = 3), and social media posts (n = 1). The clinical indications in which response prediction was assessed were depression (n = 21) and psychosis (n = 4). Changes in multiple anatomical regions in the brain were identified as holding a predictive value for response to ECT. These primarily centered on the limbic system and associated networks. Clinical features predicting good response to ECT in depression included shorter duration, lower severity, higher medication dose, psychotic features, low cortisol levels, and positive family history. It has also been possible to predict the likelihood of relapse of readmission with psychosis after ECT treatment, including a better response if higher transfer entropy was calculated from EEG signals. A transdisciplinary approach with an international consortium collecting a wide range of retrospective and prospective data may help to refine and extend these outcomes and translate them into clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极闭月完成签到,获得积分10
1秒前
ponny2001发布了新的文献求助10
2秒前
暴躁小李发布了新的文献求助10
3秒前
soyio完成签到,获得积分10
4秒前
haixuWang完成签到,获得积分10
6秒前
zhangxh应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
丰知然应助科研通管家采纳,获得10
7秒前
丰知然应助科研通管家采纳,获得10
8秒前
丰知然应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
丰知然应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
Hello应助干净的天与采纳,获得10
8秒前
深情安青应助ponny2001采纳,获得10
8秒前
15秒前
小李在读研完成签到,获得积分10
16秒前
IP190237完成签到,获得积分10
18秒前
科研通AI2S应助lihongjie采纳,获得10
18秒前
李健的小迷弟应助卓梨采纳,获得10
22秒前
22秒前
完美世界应助爆米花采纳,获得10
24秒前
Owen应助科研糊涂神采纳,获得10
25秒前
26秒前
28秒前
Clarity完成签到,获得积分10
28秒前
29秒前
中和皇极应助qiu采纳,获得10
30秒前
CipherSage应助我需要文献采纳,获得10
31秒前
32秒前
32秒前
32秒前
元半仙发布了新的文献求助10
32秒前
DrYang发布了新的文献求助10
33秒前
神奇的种子完成签到,获得积分10
33秒前
33秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693