数学
厄米矩阵
纯数学
厄米流形
一般化
公制(单位)
歧管(流体力学)
卡勒流形
Kodaira尺寸
复杂流形
拉普拉斯算子
维数(图论)
核(代数)
复杂尺寸
厄米对称空间
域代数上的
数学分析
里希曲率
全纯函数
几何学
机械工程
工程类
经济
曲率
运营管理
作者
Lorenzo Sillari,Адриано Томассини
标识
DOI:10.1142/s0129167x24420035
摘要
In 1954, Hirzebruch reported a problem posed by Kodaira and Spencer: on compact almost complex manifolds, is the dimension [Formula: see text] of the kernel of the Dolbeault Laplacian independent of the choice of almost Hermitian metric? In this paper, we review recent progresses on the original problem and we introduce a similar one: on compact almost complex manifolds, find a generalization of Bott–Chern and Aeppli numbers which is metric-independent. We find a solution to our problem valid on almost Kähler [Formula: see text]-manifolds.
科研通智能强力驱动
Strongly Powered by AbleSci AI