亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Trustworthy Artificial Intelligence (TAI) in the Context of Explainability and Robustness

可信赖性 计算机科学 更安全的 稳健性(进化) 人工智能 数据科学 人工智能应用 桥接(联网) 计算机安全 生物化学 化学 基因
作者
Bhanu Chander,Chinju John,Lekha Warrier,G. Kumaravelan
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
被引量:12
标识
DOI:10.1145/3675392
摘要

From the innovation, Artificial Intelligence (AI) materialized as one of the noticeable research areas in various technologies and has almost expanded into every aspect of modern human life. However, nowadays, the development of AI is unpredictable with the stated values of those developing them; hence, the risk of misbehaving AI increases continuously. Therefore, there are uncertainties about indorsing that the development and deploying AI are favorable and not unfavorable to humankind. In addition, AI holds a black-box pattern, which results in a lack of understanding of how systems can work based on the raised concerns. From the above discussion, trustworthy AI is vital for the extensive adoption of AI in many applications, with strong attention to humankind and the need to focus on AI systems developing into the system outline at the time of system design. In this survey, we discuss compound materials on trustworthy AI and present state-of-the-art of trustworthy AI technologies, revealing new perspectives, bridging knowledge gaps, and paving the way for potential advances of robustness, and explainability rules which play a proactive role in designing AI systems. Systems that are reliable and secure and mimic human behaviour significantly impact the technological AI ecosystem. We provided various contemporary technologies to build explainability and robustness for AI-based solutions, so AI works safer and more trustworthy. Finally, we conclude our survey paper with high-end opportunities, challenges, and future research directions for trustworthy AI to investigate in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
刚刚
29秒前
31秒前
渊思发布了新的文献求助10
35秒前
44秒前
王小鱼发布了新的文献求助10
47秒前
阿泽发布了新的文献求助30
49秒前
50秒前
完美世界应助阿泽采纳,获得10
59秒前
1分钟前
科研通AI2S应助王小鱼采纳,获得10
1分钟前
善学以致用应助王小鱼采纳,获得10
1分钟前
小透明应助科研通管家采纳,获得10
1分钟前
HMG1COA完成签到 ,获得积分10
1分钟前
Artin完成签到,获得积分10
1分钟前
1分钟前
讲究海明威完成签到,获得积分10
2分钟前
坚强的广山完成签到,获得积分0
2分钟前
朴实的海之完成签到 ,获得积分10
2分钟前
朴实的海之关注了科研通微信公众号
2分钟前
3分钟前
3分钟前
yi一一完成签到,获得积分10
3分钟前
充电宝应助朴实的海之采纳,获得30
3分钟前
3分钟前
3分钟前
科研搬运工完成签到,获得积分10
3分钟前
薄荷小新完成签到 ,获得积分10
3分钟前
lql完成签到 ,获得积分10
3分钟前
jessicaw完成签到,获得积分10
4分钟前
阿泽发布了新的文献求助10
4分钟前
打打应助驭剑士采纳,获得10
4分钟前
4分钟前
驭剑士发布了新的文献求助10
4分钟前
4分钟前
Hello应助驭剑士采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
5分钟前
Vegeta完成签到 ,获得积分10
5分钟前
驭剑士完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3596026
求助须知:如何正确求助?哪些是违规求助? 3162963
关于积分的说明 9542814
捐赠科研通 2867298
什么是DOI,文献DOI怎么找? 1575645
邀请新用户注册赠送积分活动 740270
科研通“疑难数据库(出版商)”最低求助积分说明 724067