Prevalence rate of primary osteoporosis in China: a meta-analysis

医学 荟萃分析 漏斗图 流行病学 人口学 出版偏见 生物统计学 元回归 中国 人口 公共卫生 环境卫生 内科学 地理 病理 考古 社会学
作者
Fang Fei Lyu,Vimala Ramoo,Ping Lei Chui,Ng Chong Guan,Yuanyuan Zhang
出处
期刊:BMC Public Health [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12889-024-18932-w
摘要

Abstract Background Primary osteoporosis (POP) is recognized as a “silent disease” and often ignored. This meta-analysis aimed to determine the prevalence of POP in the Chinese population over the past 20 years to raise awareness of the disease’s epidemiology, which is hoped to help prevent and treat the condition better. Methods Eight English and three Chinese language databases were searched systematically from January 2002 to December 2023. Relevant data were analysed using Stata 16.0. Meta-regression and subgroup analyses were performed to explore causes of heterogeneity. A funnel plot was further drawn in combination with Egger and Begg tests to determine publication bias. Results A total of 45 studies (241,813 participants) were included. The meta-analysis revealed that the overall prevalence of POP in the Chinese population was 18.2% (95% CI: 14.7–21.7%), showing a positive correlation with age. Specifically, prevalence rates were 23.4% (18.3–28.5%) in women and 11.5% (9.1–13.9%) in men. A notable increase was observed within the span of 20 years (16.9% before 2010 and 20.3% in 2011–2020). Notably, regional variations were observed, with southern China reporting a lower prevalence of 16.4% compared to 20.2% in northern China. Meta-regression suggested that sample size significantly influenced the estimation of point prevalence ( P = 0.037). Conclusions Over the past two decades, there has been an increase in the prevalence of POP within the Chinese population. The growing prevalence of older individuals and women further highlights the urgency for tailored disease prevention and control measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邢夏之发布了新的文献求助10
1秒前
1秒前
欣喜书桃完成签到,获得积分10
2秒前
2秒前
陈木木完成签到,获得积分10
2秒前
刘旭阳发布了新的文献求助10
2秒前
2秒前
hhhhhhh发布了新的文献求助10
2秒前
长情洙完成签到,获得积分10
3秒前
Lilac完成签到 ,获得积分10
3秒前
3秒前
3秒前
MissXia完成签到,获得积分10
3秒前
NUNKI完成签到,获得积分10
3秒前
迅速星星完成签到,获得积分10
3秒前
科研废物发布了新的文献求助10
4秒前
ltc完成签到,获得积分10
4秒前
科研通AI5应助诚c采纳,获得10
4秒前
Mrrr发布了新的文献求助10
4秒前
sganthem完成签到,获得积分10
4秒前
5秒前
哦吼完成签到,获得积分10
5秒前
5秒前
lm发布了新的文献求助10
6秒前
月白发布了新的文献求助10
6秒前
π.完成签到,获得积分10
7秒前
7秒前
李健应助长情洙采纳,获得10
7秒前
7秒前
科研小白完成签到,获得积分10
8秒前
8秒前
RandyD发布了新的文献求助10
8秒前
8秒前
最最最发布了新的文献求助10
8秒前
9秒前
π.发布了新的文献求助10
9秒前
10秒前
yangyangyang发布了新的文献求助10
10秒前
siccy完成签到 ,获得积分10
10秒前
图南关注了科研通微信公众号
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759