Denoising Diffusion Probabilistic Model for Face Sketch-to-Photo Synthesis

素描 概率逻辑 计算机科学 面子(社会学概念) 降噪 人工智能 图像去噪 计算机视觉 扩散 模式识别(心理学) 算法 社会科学 物理 社会学 热力学
作者
Yue Que,Xiong Li,Weiguo Wan,Xue Xia,Zhiwei Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcsvt.2024.3409184
摘要

The field of face sketch-to-photo synthesis involves generating photographic facial images with enhanced details and a heightened sense of style realism. In recent years, the advancement of deep learning techniques has significantly contributed to the development of methods for synthesizing photographic face images from sketches. Nevertheless, challenges remain in synthesizing facial photographs with richer details and more accurate structural representation. This paper introduces a novel architecture for face sketch-to-photo synthesis, using denoising diffusion probabilistic models (DDPM). Our approach simplifies the complex transformation process into sequential forward and backward denoising steps. We incorporate a pretrained coarse generator to effectively encode sketch information, integrating it into each backward step to guide the generative process toward accurate photo space representation. Furthermore, we design a detail diffusion branch to refine the coarse photo face generated from the coarse generator. By deeply fusing multiscale detail features from this branch with a sophisticated conditional noise predictor, our model effectively captures the correlation between detail and stylistic elements both in sketches and in photographic faces. Extensive experimental evaluations on three datasets show the effectiveness of our model, emphasizing its ability to synthesize facial photographs with remarkable realism and rich detail. The synthesized facial images consistently demonstrate superior face recognition accuracy, surpassing that of state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
02发布了新的文献求助10
1秒前
槿萱完成签到,获得积分10
1秒前
jjf发布了新的文献求助10
1秒前
听话的延恶完成签到 ,获得积分10
2秒前
共享精神应助舒心的冰烟采纳,获得10
3秒前
nnnd77完成签到,获得积分10
3秒前
4秒前
烟花应助woodenfish采纳,获得10
5秒前
五块墓碑完成签到,获得积分10
6秒前
7秒前
灵巧胜发布了新的文献求助10
7秒前
7秒前
bab发布了新的文献求助10
8秒前
陌路完成签到,获得积分10
9秒前
情怀应助大侦探皮卡丘采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得20
11秒前
Tourist应助科研通管家采纳,获得10
11秒前
ma发布了新的文献求助10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得20
11秒前
Zx_1993应助科研通管家采纳,获得20
11秒前
隐形曼青应助jjf采纳,获得30
11秒前
Tourist应助科研通管家采纳,获得10
11秒前
精明凡双应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
淡定的勒应助科研通管家采纳,获得10
11秒前
Tourist应助科研通管家采纳,获得10
11秒前
77发布了新的文献求助10
11秒前
自信的蓝天完成签到,获得积分20
11秒前
Ava应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得200
12秒前
wwz应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298490
求助须知:如何正确求助?哪些是违规求助? 4447022
关于积分的说明 13841382
捐赠科研通 4332463
什么是DOI,文献DOI怎么找? 2378206
邀请新用户注册赠送积分活动 1373449
关于科研通互助平台的介绍 1339015