已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Denoising Diffusion Probabilistic Model for Face Sketch-to-Photo Synthesis

素描 概率逻辑 计算机科学 面子(社会学概念) 降噪 人工智能 图像去噪 计算机视觉 扩散 模式识别(心理学) 算法 社会科学 物理 社会学 热力学
作者
Yue Que,Xiong Li,Weiguo Wan,Xue Xia,Zhiwei Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcsvt.2024.3409184
摘要

The field of face sketch-to-photo synthesis involves generating photographic facial images with enhanced details and a heightened sense of style realism. In recent years, the advancement of deep learning techniques has significantly contributed to the development of methods for synthesizing photographic face images from sketches. Nevertheless, challenges remain in synthesizing facial photographs with richer details and more accurate structural representation. This paper introduces a novel architecture for face sketch-to-photo synthesis, using denoising diffusion probabilistic models (DDPM). Our approach simplifies the complex transformation process into sequential forward and backward denoising steps. We incorporate a pretrained coarse generator to effectively encode sketch information, integrating it into each backward step to guide the generative process toward accurate photo space representation. Furthermore, we design a detail diffusion branch to refine the coarse photo face generated from the coarse generator. By deeply fusing multiscale detail features from this branch with a sophisticated conditional noise predictor, our model effectively captures the correlation between detail and stylistic elements both in sketches and in photographic faces. Extensive experimental evaluations on three datasets show the effectiveness of our model, emphasizing its ability to synthesize facial photographs with remarkable realism and rich detail. The synthesized facial images consistently demonstrate superior face recognition accuracy, surpassing that of state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhong发布了新的文献求助10
刚刚
上官若男应助忧虑的代容采纳,获得10
1秒前
2秒前
lhs完成签到,获得积分20
4秒前
4秒前
情怀应助顺心人达采纳,获得10
5秒前
zzzdx发布了新的文献求助10
8秒前
9秒前
田雨弘完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
接两块钱应助一一采纳,获得10
12秒前
帅气绮露完成签到,获得积分10
13秒前
13秒前
windom完成签到,获得积分10
13秒前
mage完成签到,获得积分10
14秒前
haha完成签到 ,获得积分10
15秒前
帅气绮露发布了新的文献求助10
16秒前
lhs发布了新的文献求助30
16秒前
曲奇饼干发布了新的文献求助10
17秒前
18秒前
我是老大应助yier采纳,获得10
18秒前
SciGPT应助淡淡梦容采纳,获得30
19秒前
CodeCraft应助hotdx采纳,获得10
21秒前
Orange应助jhw采纳,获得10
21秒前
22秒前
22秒前
24秒前
顾矜应助森森森采纳,获得10
26秒前
坞屿完成签到,获得积分20
26秒前
jhw完成签到,获得积分10
27秒前
28秒前
几道完成签到,获得积分10
29秒前
杜大帅发布了新的文献求助30
29秒前
文艺的从筠完成签到,获得积分10
30秒前
31秒前
32秒前
初夏发布了新的文献求助10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770