交易激励
化学
细胞生物学
癌症研究
生物化学
生物
基因
转录因子
作者
Congshu Huang,Liangliang Zhang,Pan Shen,Zekun Wu,Gaofu Li,Yijian Huang,Ting Ao,Lin Luo,Changkun Hu,Ningning Wang,Renzeng Quzhuo,Li-Shan Tian,Chaoji Huangfu,Zebin Liao,Yue Gao
标识
DOI:10.1016/j.freeradbiomed.2024.05.047
摘要
Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor β (CBFβ) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.
科研通智能强力驱动
Strongly Powered by AbleSci AI