Development and Validation of a Predictive Model for Early Identification of Cognitive Impairment Risk in Community-Based Hypertensive Patients

纵向研究 接收机工作特性 医学 预测效度 认知 萧条(经济学) 老年学 心理学 物理疗法 临床心理学 精神科 内科学 病理 经济 宏观经济学
作者
Li Y,Jimei Xin,Sen Fang,Fang Wang,Yufei Jin,L P Wang
出处
期刊:Journal of Applied Gerontology [SAGE]
被引量:2
标识
DOI:10.1177/07334648241257795
摘要

Objective: To investigate the risk factors for the development of mild cognitive dysfunction in hypertensive patients in the community and to develop a risk prediction model. Method: The data used in this study were obtained from two sources: the China Health and Retirement Longitudinal Study (CHARLS) and the Chinese Longitudinal Healthy Longevity Survey (CLHLS). A total of 1121 participants from CHARLS were randomly allocated into a training set and a validation set, following a 70:30 ratio. Meanwhile, an additional 4016 participants from CLHLS were employed for external validation of the model. The patients in this study were divided into two groups: those with mild cognitive impairment and those without. General information, employment status, pension, health insurance, and presence of depressive symptoms were compared between the two groups. LASSO regression analysis was employed to identify the most predictive variables for the model, utilizing 14-fold cross-validation. The risk prediction model for cognitive impairment in hypertensive populations was developed using generalized linear models. The model’s discriminatory power was evaluated through the area under the receiver operating characteristic (ROC) curve and calibration curves. Results: In the modeling group, eight variables such as gender, age, residence, education, alcohol use, depression, employment status, and health insurance were ultimately selected from an initial pool of 21 potential predictors to construct the risk prediction model. The area under the curve (AUC) values for the training, internal, and external validation sets were 0.777, 0.785, and 0.782, respectively. All exceeded the threshold of 0.7, suggesting that the model effectively predicts the incidence of mild cognitive dysfunction in community-based hypertensive patients. A risk prediction model was developed using a generalized linear model in conjunction with Lasso regression. The model’s performance was evaluated using the area under the receiver operating characteristic (ROC) curve. Hosmer–Lemeshow test values yielded p = .346 and p = .626, both of which exceeded the 0.05 threshold. Calibration curves demonstrated a significant agreement between the nomogram model and observed outcomes, serving as an effective tool for evaluating the model’s predictive performance. Discussion: The predictive model developed in this study serves as a promising and efficient tool for evaluating cognitive impairment in hypertensive patients, aiding community healthcare workers in identifying at-risk populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lmt发布了新的文献求助10
1秒前
1秒前
kermitds发布了新的文献求助10
2秒前
2秒前
悦耳的雍发布了新的文献求助10
3秒前
3秒前
勿忘心安完成签到,获得积分10
3秒前
领导范儿应助momo采纳,获得10
3秒前
4秒前
zoe完成签到,获得积分10
4秒前
lzl17o8发布了新的文献求助10
6秒前
菠萝贝完成签到,获得积分10
6秒前
6秒前
jianxiu发布了新的文献求助10
7秒前
小二郎应助LLLLL采纳,获得10
7秒前
linhhhh关注了科研通微信公众号
8秒前
英姑应助雪落采纳,获得10
8秒前
EmmaLin发布了新的文献求助10
9秒前
大模型应助丁杰伦采纳,获得10
9秒前
wenli发布了新的文献求助10
9秒前
小白完成签到,获得积分10
10秒前
10秒前
乐观的致远应助霖宸羽采纳,获得20
10秒前
秋澍壆发布了新的文献求助10
11秒前
czk关注了科研通微信公众号
11秒前
11秒前
12秒前
Hello应助吴彦祖采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
shanglei发布了新的文献求助10
16秒前
Dakota完成签到,获得积分10
16秒前
彭于晏应助快乐若翠采纳,获得10
16秒前
17秒前
小短腿飞行员完成签到,获得积分10
17秒前
聪明无施完成签到 ,获得积分10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442411
求助须知:如何正确求助?哪些是违规求助? 4552693
关于积分的说明 14237826
捐赠科研通 4473934
什么是DOI,文献DOI怎么找? 2451764
邀请新用户注册赠送积分活动 1442609
关于科研通互助平台的介绍 1418551