Deep learning survival model predicts outcome after intracerebral hemorrhage from initial CT scan

医学 脑出血 改良兰金量表 对比度(视觉) 内科学 人工智能 计算机科学 缺血 蛛网膜下腔出血 缺血性中风
作者
Yutong Chen,Cyprien Rivier,Samantha Mora,Victor Torres Lopez,Seyedmehdi Payabvash,Kevin N. Sheth,Andreas Harloff,Guido J. Falcone,Jonathan Rosand,Ernst Mayerhofer,Christopher D. Anderson
出处
期刊:European stroke journal [SAGE]
标识
DOI:10.1177/23969873241260154
摘要

Background: Predicting functional impairment after intracerebral hemorrhage (ICH) provides valuable information for planning of patient care and rehabilitation strategies. Current prognostic tools are limited in making long term predictions and require multiple expert-defined inputs and interpretation that make their clinical implementation challenging. This study aimed to predict long term functional impairment of ICH patients from admission non-contrast CT scans, leveraging deep learning models in a survival analysis framework. Methods: We used the admission non-contrast CT scans from 882 patients from the Massachusetts General Hospital ICH Study for training, hyperparameter optimization, and model selection, and 146 patients from the Yale New Haven ICH Study for external validation of a deep learning model predicting functional outcome. Disability (modified Rankin scale [mRS] > 2), severe disability (mRS > 4), and dependent living status were assessed via telephone interviews after 6, 12, and 24 months. The prediction methods were evaluated by the c-index and compared with ICH score and FUNC score. Results: Using non-contrast CT, our deep learning model achieved higher prediction accuracy of post-ICH dependent living, disability, and severe disability by 6, 12, and 24 months (c-index 0.742 [95% CI –0.700 to 0.778], 0.712 [95% CI –0.674 to 0.752], 0.779 [95% CI –0.733 to 0.832] respectively) compared with the ICH score (c-index 0.673 [95% CI –0.662 to 0.688], 0.647 [95% CI –0.637 to 0.661] and 0.697 [95% CI –0.675 to 0.717]) and FUNC score (c-index 0.701 [95% CI– 0.698 to 0.723], 0.668 [95% CI –0.657 to 0.680] and 0.727 [95% CI –0.708 to 0.753]). In the external independent Yale-ICH cohort, similar performance metrics were obtained for disability and severe disability (c-index 0.725 [95% CI –0.673 to 0.781] and 0.747 [95% CI –0.676 to 0.807], respectively). Similar AUC of predicting each outcome at 6 months, 1 and 2 years after ICH was achieved compared with ICH score and FUNC score. Conclusion: We developed a generalizable deep learning model to predict onset of dependent living and disability after ICH, which could help to guide treatment decisions, advise relatives in the acute setting, optimize rehabilitation strategies, and anticipate long-term care needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LSY完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
天天快乐应助pterionGao采纳,获得10
3秒前
4秒前
JOHNLJY完成签到,获得积分10
4秒前
古月发布了新的文献求助10
4秒前
李大帅完成签到,获得积分10
6秒前
goosnake发布了新的文献求助10
6秒前
小二郎应助猪猪hero采纳,获得30
6秒前
羽柒er完成签到,获得积分10
6秒前
BIGDUCK发布了新的文献求助200
7秒前
小欣完成签到,获得积分10
7秒前
ZhangR完成签到,获得积分10
7秒前
wengi94完成签到,获得积分10
7秒前
10秒前
wanci应助消费折扣999采纳,获得10
10秒前
10秒前
10秒前
念0完成签到 ,获得积分10
11秒前
12秒前
12秒前
桐桐应助蹦蹦又跳跳采纳,获得10
13秒前
13秒前
交大市长完成签到,获得积分10
14秒前
布枕头发布了新的文献求助10
15秒前
goosnake完成签到,获得积分20
15秒前
甜甜的忆彤完成签到 ,获得积分20
15秒前
刘亦菲暧昧对象完成签到 ,获得积分10
15秒前
15秒前
汉堡包应助热情十三采纳,获得10
16秒前
16秒前
月光刻本完成签到 ,获得积分10
16秒前
北还北完成签到,获得积分10
16秒前
Sandy完成签到,获得积分10
16秒前
调皮紫文发布了新的文献求助10
16秒前
动人的鬼神完成签到 ,获得积分10
17秒前
ding应助李彬采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
BIGDUCK完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545599
求助须知:如何正确求助?哪些是违规求助? 4631588
关于积分的说明 14621327
捐赠科研通 4573203
什么是DOI,文献DOI怎么找? 2507433
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455416