亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning survival model predicts outcome after intracerebral hemorrhage from initial CT scan

医学 脑出血 改良兰金量表 对比度(视觉) 内科学 人工智能 蛛网膜下腔出血 缺血性中风 缺血 计算机科学
作者
Yutong Chen,Cyprien Rivier,Samantha Mora,Victor Torres Lopez,Seyedmehdi Payabvash,Kevin N. Sheth,Andreas Harloff,Guido J. Falcone,Jonathan Rosand,Ernst Mayerhofer,Christopher D. Anderson
出处
期刊:European stroke journal [SAGE]
标识
DOI:10.1177/23969873241260154
摘要

Background: Predicting functional impairment after intracerebral hemorrhage (ICH) provides valuable information for planning of patient care and rehabilitation strategies. Current prognostic tools are limited in making long term predictions and require multiple expert-defined inputs and interpretation that make their clinical implementation challenging. This study aimed to predict long term functional impairment of ICH patients from admission non-contrast CT scans, leveraging deep learning models in a survival analysis framework. Methods: We used the admission non-contrast CT scans from 882 patients from the Massachusetts General Hospital ICH Study for training, hyperparameter optimization, and model selection, and 146 patients from the Yale New Haven ICH Study for external validation of a deep learning model predicting functional outcome. Disability (modified Rankin scale [mRS] > 2), severe disability (mRS > 4), and dependent living status were assessed via telephone interviews after 6, 12, and 24 months. The prediction methods were evaluated by the c-index and compared with ICH score and FUNC score. Results: Using non-contrast CT, our deep learning model achieved higher prediction accuracy of post-ICH dependent living, disability, and severe disability by 6, 12, and 24 months (c-index 0.742 [95% CI –0.700 to 0.778], 0.712 [95% CI –0.674 to 0.752], 0.779 [95% CI –0.733 to 0.832] respectively) compared with the ICH score (c-index 0.673 [95% CI –0.662 to 0.688], 0.647 [95% CI –0.637 to 0.661] and 0.697 [95% CI –0.675 to 0.717]) and FUNC score (c-index 0.701 [95% CI– 0.698 to 0.723], 0.668 [95% CI –0.657 to 0.680] and 0.727 [95% CI –0.708 to 0.753]). In the external independent Yale-ICH cohort, similar performance metrics were obtained for disability and severe disability (c-index 0.725 [95% CI –0.673 to 0.781] and 0.747 [95% CI –0.676 to 0.807], respectively). Similar AUC of predicting each outcome at 6 months, 1 and 2 years after ICH was achieved compared with ICH score and FUNC score. Conclusion: We developed a generalizable deep learning model to predict onset of dependent living and disability after ICH, which could help to guide treatment decisions, advise relatives in the acute setting, optimize rehabilitation strategies, and anticipate long-term care needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FLANKS发布了新的文献求助10
2秒前
平淡的衣完成签到,获得积分10
9秒前
NexusExplorer应助AXX041795采纳,获得10
16秒前
星星科语发布了新的文献求助10
16秒前
简单发布了新的文献求助20
17秒前
魔幻的芳完成签到,获得积分10
21秒前
SSY发布了新的文献求助10
21秒前
火星上的宝马完成签到,获得积分10
24秒前
平淡的衣发布了新的文献求助20
25秒前
26秒前
悲凉的忆南完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
31秒前
陈旧完成签到,获得积分10
31秒前
34秒前
34秒前
欣欣子完成签到,获得积分10
35秒前
虚拟的清炎完成签到 ,获得积分10
37秒前
sunstar完成签到,获得积分10
38秒前
XXXXXX发布了新的文献求助10
41秒前
yxl完成签到,获得积分10
42秒前
可耐的盈完成签到,获得积分10
45秒前
绿毛水怪完成签到,获得积分10
48秒前
yg发布了新的文献求助10
50秒前
lsc完成签到,获得积分10
52秒前
XXXXXX完成签到,获得积分10
54秒前
54秒前
星星科语完成签到,获得积分20
54秒前
小fei完成签到,获得积分10
56秒前
andrele发布了新的文献求助10
59秒前
麻辣薯条完成签到,获得积分10
59秒前
hanlin给滕祥的求助进行了留言
1分钟前
时尚身影完成签到,获得积分10
1分钟前
leoduo完成签到,获得积分0
1分钟前
ryx发布了新的文献求助10
1分钟前
流苏2完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187