已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning survival model predicts outcome after intracerebral hemorrhage from initial CT scan

医学 脑出血 改良兰金量表 对比度(视觉) 内科学 人工智能 蛛网膜下腔出血 缺血性中风 缺血 计算机科学
作者
Yutong Chen,Cyprien Rivier,Samantha Mora,Victor Torres Lopez,Seyedmehdi Payabvash,Kevin N. Sheth,Andreas Harloff,Guido J. Falcone,Jonathan Rosand,Ernst Mayerhofer,Christopher D. Anderson
出处
期刊:European stroke journal [SAGE]
标识
DOI:10.1177/23969873241260154
摘要

Background: Predicting functional impairment after intracerebral hemorrhage (ICH) provides valuable information for planning of patient care and rehabilitation strategies. Current prognostic tools are limited in making long term predictions and require multiple expert-defined inputs and interpretation that make their clinical implementation challenging. This study aimed to predict long term functional impairment of ICH patients from admission non-contrast CT scans, leveraging deep learning models in a survival analysis framework. Methods: We used the admission non-contrast CT scans from 882 patients from the Massachusetts General Hospital ICH Study for training, hyperparameter optimization, and model selection, and 146 patients from the Yale New Haven ICH Study for external validation of a deep learning model predicting functional outcome. Disability (modified Rankin scale [mRS] > 2), severe disability (mRS > 4), and dependent living status were assessed via telephone interviews after 6, 12, and 24 months. The prediction methods were evaluated by the c-index and compared with ICH score and FUNC score. Results: Using non-contrast CT, our deep learning model achieved higher prediction accuracy of post-ICH dependent living, disability, and severe disability by 6, 12, and 24 months (c-index 0.742 [95% CI –0.700 to 0.778], 0.712 [95% CI –0.674 to 0.752], 0.779 [95% CI –0.733 to 0.832] respectively) compared with the ICH score (c-index 0.673 [95% CI –0.662 to 0.688], 0.647 [95% CI –0.637 to 0.661] and 0.697 [95% CI –0.675 to 0.717]) and FUNC score (c-index 0.701 [95% CI– 0.698 to 0.723], 0.668 [95% CI –0.657 to 0.680] and 0.727 [95% CI –0.708 to 0.753]). In the external independent Yale-ICH cohort, similar performance metrics were obtained for disability and severe disability (c-index 0.725 [95% CI –0.673 to 0.781] and 0.747 [95% CI –0.676 to 0.807], respectively). Similar AUC of predicting each outcome at 6 months, 1 and 2 years after ICH was achieved compared with ICH score and FUNC score. Conclusion: We developed a generalizable deep learning model to predict onset of dependent living and disability after ICH, which could help to guide treatment decisions, advise relatives in the acute setting, optimize rehabilitation strategies, and anticipate long-term care needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
科研通AI6.1应助Candy采纳,获得10
8秒前
NKKKKKK完成签到,获得积分10
8秒前
晚棠发布了新的文献求助10
8秒前
f1mike110发布了新的文献求助30
8秒前
风吹而过完成签到 ,获得积分10
9秒前
10秒前
liwang9301完成签到,获得积分10
11秒前
聆(*^_^*)完成签到 ,获得积分10
11秒前
12秒前
NKKKKKK发布了新的文献求助10
12秒前
14秒前
熊逍发布了新的文献求助10
15秒前
江枫渔火完成签到 ,获得积分10
18秒前
没见云发布了新的文献求助10
18秒前
尊敬寒松发布了新的文献求助60
22秒前
23秒前
刻苦的冬易完成签到 ,获得积分10
26秒前
脑洞疼应助f1mike110采纳,获得10
26秒前
Orange应助超级野狼采纳,获得10
26秒前
27秒前
pay发布了新的文献求助10
29秒前
30秒前
细心怀亦完成签到 ,获得积分10
34秒前
sssyyy发布了新的文献求助10
35秒前
Guts发布了新的文献求助10
35秒前
40秒前
zl13332完成签到 ,获得积分10
42秒前
shy完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
45秒前
45秒前
111发布了新的文献求助10
47秒前
47秒前
50秒前
51秒前
马宁婧完成签到 ,获得积分10
54秒前
柠木完成签到 ,获得积分10
56秒前
Dr.c发布了新的文献求助10
58秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387