已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning survival model predicts outcome after intracerebral hemorrhage from initial CT scan

医学 脑出血 改良兰金量表 对比度(视觉) 内科学 人工智能 蛛网膜下腔出血 缺血性中风 缺血 计算机科学
作者
Yutong Chen,Cyprien Rivier,Samantha Mora,Victor Torres Lopez,Seyedmehdi Payabvash,Kevin N. Sheth,Andreas Harloff,Guido J. Falcone,Jonathan Rosand,Ernst Mayerhofer,Christopher D. Anderson
出处
期刊:European stroke journal [SAGE]
标识
DOI:10.1177/23969873241260154
摘要

Background: Predicting functional impairment after intracerebral hemorrhage (ICH) provides valuable information for planning of patient care and rehabilitation strategies. Current prognostic tools are limited in making long term predictions and require multiple expert-defined inputs and interpretation that make their clinical implementation challenging. This study aimed to predict long term functional impairment of ICH patients from admission non-contrast CT scans, leveraging deep learning models in a survival analysis framework. Methods: We used the admission non-contrast CT scans from 882 patients from the Massachusetts General Hospital ICH Study for training, hyperparameter optimization, and model selection, and 146 patients from the Yale New Haven ICH Study for external validation of a deep learning model predicting functional outcome. Disability (modified Rankin scale [mRS] > 2), severe disability (mRS > 4), and dependent living status were assessed via telephone interviews after 6, 12, and 24 months. The prediction methods were evaluated by the c-index and compared with ICH score and FUNC score. Results: Using non-contrast CT, our deep learning model achieved higher prediction accuracy of post-ICH dependent living, disability, and severe disability by 6, 12, and 24 months (c-index 0.742 [95% CI –0.700 to 0.778], 0.712 [95% CI –0.674 to 0.752], 0.779 [95% CI –0.733 to 0.832] respectively) compared with the ICH score (c-index 0.673 [95% CI –0.662 to 0.688], 0.647 [95% CI –0.637 to 0.661] and 0.697 [95% CI –0.675 to 0.717]) and FUNC score (c-index 0.701 [95% CI– 0.698 to 0.723], 0.668 [95% CI –0.657 to 0.680] and 0.727 [95% CI –0.708 to 0.753]). In the external independent Yale-ICH cohort, similar performance metrics were obtained for disability and severe disability (c-index 0.725 [95% CI –0.673 to 0.781] and 0.747 [95% CI –0.676 to 0.807], respectively). Similar AUC of predicting each outcome at 6 months, 1 and 2 years after ICH was achieved compared with ICH score and FUNC score. Conclusion: We developed a generalizable deep learning model to predict onset of dependent living and disability after ICH, which could help to guide treatment decisions, advise relatives in the acute setting, optimize rehabilitation strategies, and anticipate long-term care needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Blank完成签到 ,获得积分10
刚刚
希望天下0贩的0应助乐乐采纳,获得10
1秒前
南亭完成签到,获得积分10
1秒前
封闭货车完成签到,获得积分10
1秒前
tzy发布了新的文献求助10
3秒前
houbinghua发布了新的文献求助10
4秒前
香蕉觅云应助研究牲采纳,获得10
5秒前
学不会发布了新的文献求助10
6秒前
Wish完成签到,获得积分10
9秒前
牧羊少年完成签到,获得积分10
11秒前
量子看世界完成签到,获得积分10
11秒前
小二郎应助榴下晨光采纳,获得10
12秒前
16秒前
上官若男应助孙文杰采纳,获得10
16秒前
20秒前
20秒前
张张完成签到,获得积分10
21秒前
取什么名字呢完成签到,获得积分10
21秒前
小蘑菇应助susu采纳,获得10
22秒前
24秒前
榴下晨光发布了新的文献求助10
25秒前
25秒前
26秒前
MYZ完成签到 ,获得积分10
26秒前
苏耘琛完成签到,获得积分10
27秒前
31秒前
十三月完成签到,获得积分10
34秒前
小何发布了新的文献求助10
37秒前
风味烤羊腿完成签到,获得积分0
38秒前
NI完成签到,获得积分10
39秒前
青花完成签到 ,获得积分10
40秒前
无花果应助shelia采纳,获得10
40秒前
顺利洋葱发布了新的文献求助80
44秒前
xl_c发布了新的文献求助50
44秒前
47秒前
50秒前
J卡卡K完成签到 ,获得积分10
50秒前
susu发布了新的文献求助10
51秒前
1分钟前
提速狗发布了新的文献求助200
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3319180
求助须知:如何正确求助?哪些是违规求助? 2950431
关于积分的说明 8551416
捐赠科研通 2627447
什么是DOI,文献DOI怎么找? 1437742
科研通“疑难数据库(出版商)”最低求助积分说明 666404
邀请新用户注册赠送积分活动 652388