已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning survival model predicts outcome after intracerebral hemorrhage from initial CT scan

医学 脑出血 改良兰金量表 对比度(视觉) 内科学 人工智能 蛛网膜下腔出血 缺血性中风 缺血 计算机科学
作者
Yutong Chen,Cyprien Rivier,Samantha Mora,Victor Torres Lopez,Seyedmehdi Payabvash,Kevin N. Sheth,Andreas Harloff,Guido J. Falcone,Jonathan Rosand,Ernst Mayerhofer,Christopher D. Anderson
出处
期刊:European stroke journal [SAGE Publishing]
标识
DOI:10.1177/23969873241260154
摘要

Background: Predicting functional impairment after intracerebral hemorrhage (ICH) provides valuable information for planning of patient care and rehabilitation strategies. Current prognostic tools are limited in making long term predictions and require multiple expert-defined inputs and interpretation that make their clinical implementation challenging. This study aimed to predict long term functional impairment of ICH patients from admission non-contrast CT scans, leveraging deep learning models in a survival analysis framework. Methods: We used the admission non-contrast CT scans from 882 patients from the Massachusetts General Hospital ICH Study for training, hyperparameter optimization, and model selection, and 146 patients from the Yale New Haven ICH Study for external validation of a deep learning model predicting functional outcome. Disability (modified Rankin scale [mRS] > 2), severe disability (mRS > 4), and dependent living status were assessed via telephone interviews after 6, 12, and 24 months. The prediction methods were evaluated by the c-index and compared with ICH score and FUNC score. Results: Using non-contrast CT, our deep learning model achieved higher prediction accuracy of post-ICH dependent living, disability, and severe disability by 6, 12, and 24 months (c-index 0.742 [95% CI –0.700 to 0.778], 0.712 [95% CI –0.674 to 0.752], 0.779 [95% CI –0.733 to 0.832] respectively) compared with the ICH score (c-index 0.673 [95% CI –0.662 to 0.688], 0.647 [95% CI –0.637 to 0.661] and 0.697 [95% CI –0.675 to 0.717]) and FUNC score (c-index 0.701 [95% CI– 0.698 to 0.723], 0.668 [95% CI –0.657 to 0.680] and 0.727 [95% CI –0.708 to 0.753]). In the external independent Yale-ICH cohort, similar performance metrics were obtained for disability and severe disability (c-index 0.725 [95% CI –0.673 to 0.781] and 0.747 [95% CI –0.676 to 0.807], respectively). Similar AUC of predicting each outcome at 6 months, 1 and 2 years after ICH was achieved compared with ICH score and FUNC score. Conclusion: We developed a generalizable deep learning model to predict onset of dependent living and disability after ICH, which could help to guide treatment decisions, advise relatives in the acute setting, optimize rehabilitation strategies, and anticipate long-term care needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助小猛人采纳,获得10
2秒前
3秒前
Hades完成签到 ,获得积分10
3秒前
5秒前
XLL小绿绿发布了新的文献求助10
5秒前
TDW发布了新的文献求助10
8秒前
8秒前
leclare发布了新的文献求助10
9秒前
万能图书馆应助cheng采纳,获得10
11秒前
小马甲应助纯纯么么哒采纳,获得10
13秒前
ddd完成签到,获得积分20
14秒前
荔枝吖发布了新的文献求助10
14秒前
陈海东完成签到,获得积分10
15秒前
所所应助czz采纳,获得10
16秒前
星辰大海应助东方秦兰采纳,获得10
16秒前
思源应助Liz采纳,获得10
18秒前
大贺呀完成签到,获得积分10
18秒前
善学以致用应助温暖白容采纳,获得10
21秒前
22秒前
23秒前
25秒前
Ww2018完成签到,获得积分10
25秒前
26秒前
留胡子的昊强完成签到,获得积分10
26秒前
27秒前
27秒前
czz发布了新的文献求助10
28秒前
30秒前
逆天大脚完成签到,获得积分10
30秒前
08ji72发布了新的文献求助10
31秒前
王震发布了新的文献求助20
32秒前
shinn发布了新的文献求助10
32秒前
35秒前
哈哈完成签到,获得积分10
36秒前
coke完成签到,获得积分20
36秒前
36秒前
40秒前
cheng发布了新的文献求助10
40秒前
41秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968024
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166224
捐赠科研通 3248224
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610