Digital twin for credit card fraud detection: opportunities, challenges, and fraud detection advancements

信用卡诈骗 计算机科学 信用卡 人气 付款 计算机安全 块链 保护 鉴定(生物学) 卡安全代码 异常检测 互联网隐私 万维网 人工智能 医学 心理学 社会心理学 植物 护理部 生物
作者
Pushpita Chatterjee,Debashis Das,Danda B. Rawat
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:158: 410-426 被引量:8
标识
DOI:10.1016/j.future.2024.04.057
摘要

Credit cards are widely used for payments due to their convenience and broad acceptance. Their popularity comes with the critical challenge of safeguarding personal and payment information from fraud and unauthorized access. Robust security measures are crucial to maintaining trust and confidence among users. In response to this pressing issue, this paper focuses on credit card fraud detection, its challenges, and innovative solutions using digital twins and blockchain. This research highlights the importance of understanding and reducing credit card fraud to protect consumers and financial institutions. The study provides a detailed overview of credit card fraud analysis and categorizes its different types to clarify the threat landscape. It introduces a new digital twin approach to improve fraud detection. Digital twins are virtual replicas of physical systems that show promise for enhancing anomaly detection and behavioral analysis for more precise and timely fraud identification. In addition, the paper examines blockchain-enabled federated learning (BFL) as a decentralized method that uses blockchain's security features to improve collaborative learning. By merging digital twins with federated learning (FL), the study presents a dynamic strategy for identifying known and emerging fraud patterns effectively. These advanced technologies represent a significant step forward in combating credit card fraud. Overall, the research not only focuses on creating more robust fraud detection systems but also emphasizes the importance of continuous innovation and adaptation to enhance financial security measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
完美世界应助xiaozhou采纳,获得10
2秒前
3秒前
念工人发布了新的文献求助10
7秒前
8秒前
岛屿完成签到,获得积分10
8秒前
潇洒的达发布了新的文献求助10
10秒前
Akim应助lyl采纳,获得10
10秒前
嘻嘻哈哈哈完成签到,获得积分20
11秒前
SharonDu完成签到 ,获得积分10
13秒前
14秒前
未晞发布了新的文献求助10
15秒前
mgqqlwq完成签到,获得积分10
15秒前
迷人的Jack完成签到,获得积分10
16秒前
寒冷的小熊猫完成签到,获得积分10
16秒前
18秒前
潇洒的达完成签到,获得积分10
21秒前
桐桐应助念工人采纳,获得10
23秒前
橖子小姐完成签到,获得积分10
26秒前
岛屿发布了新的文献求助10
30秒前
32秒前
33秒前
Mian发布了新的文献求助10
37秒前
Akim应助科研通管家采纳,获得10
37秒前
FashionBoy应助科研通管家采纳,获得50
37秒前
SciGPT应助科研通管家采纳,获得10
37秒前
爆米花应助科研通管家采纳,获得10
38秒前
桐桐应助科研通管家采纳,获得10
38秒前
ding应助科研通管家采纳,获得10
38秒前
顾矜应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
Gergeo应助科研通管家采纳,获得20
38秒前
38秒前
缥缈南风发布了新的文献求助10
38秒前
39秒前
zhilianghui0807完成签到 ,获得积分10
41秒前
123关闭了123文献求助
41秒前
Mian完成签到,获得积分10
42秒前
贪玩的友灵完成签到 ,获得积分10
42秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164170
求助须知:如何正确求助?哪些是违规求助? 2814884
关于积分的说明 7906945
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228