Interface Regulation of Bi3TiNbO9/Rh Photocatalysts by Introducing Ultrathin Heterolayer to Enhance Overall Water Splitting

材料科学 分解水 接口(物质) 光催化 纳米技术 光电子学 催化作用 复合材料 接触角 坐滴法 生物化学 化学
作者
Jie Huang,Jianhang Qiu,Yongqiang Yang,Bing Li,Lianzhou Wang,Hui‐Ming Cheng,Gang Liu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202402711
摘要

Abstract Aurivillius compounds‐based photocatalysts have attracted extensive interest largely due to their ferroelectric properties and modifiable characteristics arising from the alternate stacking of structural units. However, the interfacial Schottky barrier between such semiconducting compounds as light absorbers and metallic cocatalysts for hydrogen evolution restrains the transfer of photogenerated electrons, resulting in low photocatalytic overall water splitting activity and stability. Here, an anions‐induced surface structure transformation strategy is employed to modulate the interface structure between Bi 3 TiNbO 9 as a typical Aurivillius compound and the cocatalyst Rh by in situ growing ultrathin Bi 2 MoO 6 heterolayer on the surface of Bi 3 TiNbO 9 nanosheets. The introduction of Bi 2 MoO 6 heterolayer lowers the energy barrier near the Bi 3 TiNbO 9 surface, which can facilitate the transfer of the photogenerated electrons from bulk to surface and thus the reduction of Rh cocatalyst for highly active hydrogen production. Compared with the Bi 3 TiNbO 9 ‐Rh photocatalyst, the proportion of low‐valence metallic Rh 0 in Bi 2 MoO 6 heterolayer‐modified Bi 3 TiNbO 9 ‐Rh (Bi 3 TiNbO 9 ‐Bi 2 MoO 6 ‐Rh) is improved by 7.76%, giving rise to a photocatalytic overall water splitting activity enhancement by a factor of 4.74. This strategy emphasizes the importance of interface regulation in promoting the transfer of photogenerated charge carriers in Aurivillius‐type photocatalysts, providing an effective pathway for designing and fabricating high‐performance photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mike完成签到,获得积分10
刚刚
刚刚
刚刚
脑洞疼应助叶世玉采纳,获得10
1秒前
JAY发布了新的文献求助10
1秒前
LV发布了新的文献求助10
1秒前
相知发布了新的文献求助10
1秒前
李行锋完成签到,获得积分10
3秒前
gyy完成签到,获得积分10
3秒前
carly完成签到 ,获得积分10
4秒前
5秒前
快乐十八完成签到,获得积分10
5秒前
科研通AI2S应助金鱼采纳,获得10
6秒前
沸腾的大海完成签到,获得积分10
7秒前
范娜发布了新的文献求助10
7秒前
汉堡包应助静静采纳,获得10
7秒前
LV完成签到,获得积分10
8秒前
8秒前
孤存完成签到 ,获得积分10
8秒前
8秒前
哈哈完成签到,获得积分10
9秒前
云中歌完成签到,获得积分10
9秒前
9秒前
MMM完成签到,获得积分10
10秒前
10秒前
yeyeming发布了新的文献求助10
10秒前
echasl73完成签到,获得积分10
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
itsserene应助科研通管家采纳,获得10
11秒前
11秒前
lucky发布了新的文献求助10
11秒前
斯文败类应助楚寅采纳,获得10
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587