已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AUV path planning in a three-dimensional marine environment based on a novel multiple swarm co-evolutionary algorithm

群体行为 运动规划 计算机科学 路径(计算) 进化算法 数学优化 算法 人工智能 数学 机器人 程序设计语言
作者
Zhilei Liu,Dayong Ning,Jiaoyi Hou,Fengrui Zhang,Gangda Liang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:164: 111933-111933 被引量:1
标识
DOI:10.1016/j.asoc.2024.111933
摘要

Autonomous underwater vehicles (AUVs) are rapidly advancing in ocean exploration. High-performance path planning techniques are essential for AUVs. Path planning for AUVs is a multi-faceted challenge, necessitating careful consideration of safety, energy consumption and the influence of sea currents to ensure the development of a high-quality trajectory that satisfies all operational criteria. Existing path planning algorithms have problems such as incomplete consideration of influencing factors, computational complexity and weak applicability. Therefore, we propose a swarm intelligence optimisation algorithm based on multiple swarm co-evolution (MCO) to address the issue of AUV path planning in a three-dimensional marine environment. First, a three-dimensional marine environment model and the corresponding path evaluation mechanism are established. Second, the MCO rule is established to ensure that the MCO has balanced exploration and exploitation capabilities. A shared dynamic optimal particle between populations is introduced to ensure information exchange between populations. In addition, the cross-integration mutation strategy has been proposed for promoting the fusion of two populations of superior genes to ensure the inheritance of superior paternal genes to the offspring. Finally, four comparison experiments are designed, and the experiments compare eight commonly used intelligent search algorithms and improved versions. The results of the experiments proved that the MCO has excellent three-dimensional marine environment path planning capability, with robustness and search capabilities superior to other swarm intelligence optimisation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
pxb完成签到,获得积分10
2秒前
洪焕良完成签到,获得积分10
7秒前
7秒前
晚意完成签到 ,获得积分10
7秒前
雷锋发布了新的文献求助10
7秒前
平淡访冬完成签到 ,获得积分10
9秒前
李霞完成签到 ,获得积分20
10秒前
12秒前
奈布完成签到 ,获得积分10
13秒前
医疗废物专用车乘客完成签到,获得积分10
13秒前
wackykao完成签到 ,获得积分10
14秒前
思源应助nhh采纳,获得10
15秒前
clown发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
Yiyyan完成签到,获得积分10
19秒前
20秒前
zhyzhy完成签到,获得积分20
21秒前
霁星河完成签到,获得积分10
21秒前
linkman完成签到,获得积分10
22秒前
like411发布了新的文献求助10
25秒前
个性慕青完成签到 ,获得积分10
26秒前
玉昆完成签到 ,获得积分10
26秒前
李健的小迷弟应助仲滋滋采纳,获得10
27秒前
王某人完成签到 ,获得积分10
28秒前
SHITOU完成签到,获得积分10
29秒前
Jes发布了新的文献求助10
31秒前
半枝桃完成签到 ,获得积分10
31秒前
32秒前
仲滋滋完成签到,获得积分10
33秒前
打打应助科研通管家采纳,获得10
34秒前
咫尺天涯完成签到,获得积分10
34秒前
35秒前
平常的刺猬完成签到 ,获得积分10
35秒前
万能图书馆应助kk采纳,获得10
35秒前
懵懂的子骞完成签到 ,获得积分10
36秒前
咫尺天涯发布了新的文献求助10
37秒前
遗梦梦完成签到,获得积分10
38秒前
仲滋滋发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234