Dynamically responsive materials, capable of reversible changes in color appearance and/or photoemission upon external stimuli, have attracted substantial attention across various fields. This study presents an effective approach wherein switchable modulation of photochromism and ultralong phosphorescence can be achieved simultaneously in a zero-dimensional organic-inorganic halide hybrid glass doped with 4,4´-bipyridine. The facile fabrication of large-scale glasses is accomplished through a combined grinding-melting-quenching process. The persistent luminescence can be regulated through the photochromic switch induced by photo-generated radicals. Furthermore, the incorporation of the aggregation-induced chirality effect generates intriguing circularly polarized luminescence, with an optical dissymmetry factor (g