Clinical performance of ultrasonic backscatter parametric and nonparametric statistics in detecting early hepatic steatosis

脂肪变性 回声 非参数统计 超声波传感器 Nakagami分布 超声波 脂肪肝 统计 医学 核医学 放射科 内科学 数学 疾病 解码方法 衰退
作者
Chih-Hao Lin,Ming‐Chih Ho,Po‐Chu Lee,Po‐Jen Yang,Yung‐Ming Jeng,Jia‐Huei Tsai,Chiung‐Nien Chen,Argon Chen
出处
期刊:Ultrasonics [Elsevier]
卷期号:142: 107391-107391 被引量:2
标识
DOI:10.1016/j.ultras.2024.107391
摘要

Diagnosis of early hepatic steatosis would allow timely intervention. B-mode ultrasound imaging was in question for detecting early steatosis, especially with a variety of concomitant parenchymal disease. This study aimed to use the surgical specimen as a reference standard to elucidate the clinical performance of ultrasonic echogenicity and backscatter parametric and nonparametric statistics in real-world scenarios. Ultrasound radio-frequency (RF) signals of right liver lobe and patient data were collected preoperatively. Surgical specimen was then used to histologically determine staging of steatosis. A backscatter nonparametric statistic (h), a known backscatter parametric statistic, i.e., the Nakagami parameter (m), and a quantitative echo intensity (env) were calculated. Among the 236 patients included in the study, 93 were grade 0 (<5% fat) and 143 were with steatosis. All the env, m and h statistics had shown significant discriminatory power of steatosis grades (AUC = 0.643–0.907 with p-value < 0.001). Mann-Whitney U tests, however, revealed that only the backscatter statistics m and h were significantly different between the groups of grades 0 and 1 steatosis. The two-way ANOVA showed a significant confounding effect of the elevated ALT on env (p-value = 0.028), but no effect on m or h. Additionally, the severe fibrosis was found to be a significant covariate for m and h. Ultrasonic signals acquired from different scanners were found linearly comparable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助elang采纳,获得10
刚刚
weiyi发布了新的文献求助10
1秒前
佩琪完成签到,获得积分10
1秒前
包容秋珊发布了新的文献求助10
1秒前
缥缈的涵菡完成签到 ,获得积分10
2秒前
冷酷的溜溜梅完成签到 ,获得积分10
2秒前
3秒前
kaikai完成签到,获得积分10
3秒前
鱼鱼鱼发布了新的文献求助10
3秒前
带善人完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI6应助zhangyulong采纳,获得10
4秒前
爆爆发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
小雨堂完成签到,获得积分10
6秒前
研友_VZG7GZ应助萝卜采纳,获得10
7秒前
7秒前
7秒前
hu123完成签到,获得积分10
8秒前
领导范儿应助DTS采纳,获得10
8秒前
8秒前
moyu37完成签到,获得积分10
8秒前
8秒前
9秒前
李xxxx发布了新的文献求助10
9秒前
愚林2024发布了新的文献求助10
9秒前
震动的雪一完成签到,获得积分10
9秒前
9秒前
9秒前
天天快乐应助weiyi采纳,获得10
10秒前
10秒前
JamesPei应助欢喜大地采纳,获得10
10秒前
10秒前
jes发布了新的文献求助10
10秒前
Ava应助光亮宛白采纳,获得10
11秒前
Leo完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802