Microstructural origins of enhanced work hardening and ductility in laser powder-bed fusion 3D-printed AlCoCrFeNi2.1 eutectic high-entropy alloys

材料科学 共晶体系 融合 高熵合金 冶金 微观结构 加工硬化 复合材料 语言学 哲学
作者
Yinuo Guo,Haijun Su,Hongliang Gao,Zhonglin Shen,Peixin Yang,Yuan Liu,Di Zhao,Zhuo Zhang,Min Guo,Xipeng Tan
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:179: 104050-104050 被引量:2
标识
DOI:10.1016/j.ijplas.2024.104050
摘要

Limited tensile ductility usually restricts the practical applications of new classes of high-strength materials in many industrial fields. Therefore, in-depth understanding of the work hardening behavior and its underlying plastic deformation mechanism are critical for the newly developed high-entropy alloys (HEAs). In this work, a geometric atomistic model of face-centered cubic (FCC)/body-centered cubic (B2) interfaces and the evolution of dislocation substructures have been investigated to explore the microstructural origins of work hardening responses for two additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloys (EHEAs) with the respective lamellar and cellular microstructures. Unlike the lamellar interphase interfaces with the most classical Kurdjumov-Sachs (KS) FCC-BCC relationship of {111}FCC∥{110}B2〈011〉FCC∥〈111〉B2, the Nishiyama-Wassermann (NW) relationship, namely {111}FCC∥{110}B2〈011〉FCC∥〈001〉B2, is observed to be dominant on the cellular interphase interfaces. Furthermore, our intermittent high-resolution transmission electron microscopy (HR-TEM) results directly show that the deformation of lamellar AlCoCrFeNi2.1 alloy first proceeds with massive stacking faults (SFs) and then dislocation walls developed across phases interfaces, due to the effective dislocation transfer capability of lamellar boundaries. The large uniform elongation of the cellular AlCoCrFeNi2.1 alloy is attributed to the stable and progressive strain-hardening mechanism that is stemmed from the activated multiple slip systems, deformation-induced SF networks, and the associated Lomer-Cottrell locks in the middle and later stages of plastic deformation. Moreover, the nano-bridging of FCC cells in the 3D-printed microstructure provides unique channels for dislocation movement, which offsets the "blocking effect" of cellular boundaries and thus suppresses the pre-mature fracture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天暗星完成签到,获得积分10
刚刚
君君欧发布了新的文献求助10
刚刚
哈尼发布了新的文献求助10
刚刚
无情泥猴桃完成签到,获得积分10
刚刚
K.I.D完成签到 ,获得积分10
1秒前
负责的调料汁完成签到,获得积分10
2秒前
geigeigei完成签到 ,获得积分10
2秒前
Yimi完成签到,获得积分10
3秒前
乐易天完成签到,获得积分10
3秒前
毛豆爸爸应助孙新月采纳,获得10
4秒前
4秒前
遥山发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
慧慧子完成签到,获得积分10
7秒前
雅迪完成签到,获得积分10
7秒前
乐乐发布了新的文献求助10
8秒前
9秒前
hjc完成签到,获得积分10
9秒前
落后语山发布了新的文献求助10
10秒前
11秒前
留胡子的小虾米完成签到,获得积分10
11秒前
愉快的甜瓜完成签到 ,获得积分10
12秒前
14秒前
hbkj完成签到,获得积分10
14秒前
Luchy发布了新的文献求助10
16秒前
英姑应助iufan采纳,获得10
16秒前
风中寄灵完成签到,获得积分10
16秒前
温暖的非笑完成签到 ,获得积分10
16秒前
wangtubianou发布了新的文献求助10
17秒前
黄剑兴发布了新的文献求助10
17秒前
17秒前
baniu完成签到,获得积分10
18秒前
肥肥熊完成签到,获得积分10
18秒前
小蘑菇应助小鱼采纳,获得10
19秒前
wlei完成签到,获得积分10
19秒前
哈尼完成签到,获得积分10
19秒前
俏皮的采波完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134291
求助须知:如何正确求助?哪些是违规求助? 2785137
关于积分的说明 7770495
捐赠科研通 2440760
什么是DOI,文献DOI怎么找? 1297506
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792