Self-supervised domain adaptation for machinery remaining useful life prediction

适应(眼睛) 域适应 计算机科学 领域(数学分析) 人工智能 机器学习 心理学 数学 神经科学 数学分析 分类器(UML)
作者
Quy Le Xuan,Marco Munderloh,Jörn Östermann
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:250: 110296-110296
标识
DOI:10.1016/j.ress.2024.110296
摘要

Remaining useful life (RUL) prediction presents one of the most crucial tasks in modern machinery prognostics and health management systems. As a powerful data-driven solution, deep learning has shown its promising potential in accurately predicting the RUL based on historical condition monitoring data. However, deep learning-based methods typically require the training and test data to be drawn from the same distribution or domain, which is usually not the case in real-world application scenarios. Unsupervised domain adaptation (UDA) methods have been proposed to address this domain shift problem, but most of them focus only on learning domain-invariant feature representations while forcing the prediction error to be low on the source labeled data. Empirical observations have shown that this kind of domain adaptation is insufficient to guarantee good generalization in the target domain. To overcome this limitation, we propose a novel self-supervised domain adaptation (SSDA) framework that additionally incorporates the intrinsic information of the target domain data into the domain adaptation process without the need for its RUL labels. We developed a dual Siamese network-based training pipeline that enables the optimization for the self-supervised task in both the source and target domains to be realized jointly in conjunction with the base UDA objectives. Evaluation results from extensive experiments on the benchmark C-MAPSS dataset of aircraft turbofan engines show the superiority of our proposed framework over other state-of-the-art methods. On average, we achieve an improvement of 20.1% and 51.2% on two different performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
斯文的斩发布了新的文献求助10
3秒前
3秒前
高高高完成签到 ,获得积分10
3秒前
yar应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
qin希望应助科研通管家采纳,获得10
6秒前
xxxllllll发布了新的文献求助10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
扫地888完成签到 ,获得积分10
6秒前
DijiaXu应助科研通管家采纳,获得10
6秒前
whatever应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
whatever应助科研通管家采纳,获得10
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
whatever应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得30
7秒前
yar应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
天天快乐应助ZWK采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014