Self-supervised domain adaptation for machinery remaining useful life prediction

适应(眼睛) 域适应 计算机科学 领域(数学分析) 人工智能 机器学习 心理学 数学 神经科学 数学分析 分类器(UML)
作者
Quy Le Xuan,Marco Munderloh,Jörn Östermann
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:250: 110296-110296
标识
DOI:10.1016/j.ress.2024.110296
摘要

Remaining useful life (RUL) prediction presents one of the most crucial tasks in modern machinery prognostics and health management systems. As a powerful data-driven solution, deep learning has shown its promising potential in accurately predicting the RUL based on historical condition monitoring data. However, deep learning-based methods typically require the training and test data to be drawn from the same distribution or domain, which is usually not the case in real-world application scenarios. Unsupervised domain adaptation (UDA) methods have been proposed to address this domain shift problem, but most of them focus only on learning domain-invariant feature representations while forcing the prediction error to be low on the source labeled data. Empirical observations have shown that this kind of domain adaptation is insufficient to guarantee good generalization in the target domain. To overcome this limitation, we propose a novel self-supervised domain adaptation (SSDA) framework that additionally incorporates the intrinsic information of the target domain data into the domain adaptation process without the need for its RUL labels. We developed a dual Siamese network-based training pipeline that enables the optimization for the self-supervised task in both the source and target domains to be realized jointly in conjunction with the base UDA objectives. Evaluation results from extensive experiments on the benchmark C-MAPSS dataset of aircraft turbofan engines show the superiority of our proposed framework over other state-of-the-art methods. On average, we achieve an improvement of 20.1% and 51.2% on two different performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fanbio完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
田様应助su采纳,获得10
3秒前
xiaoru发布了新的文献求助10
4秒前
6秒前
wogua发布了新的文献求助10
6秒前
阳佟擎苍完成签到 ,获得积分10
7秒前
7秒前
9秒前
xiaoru完成签到,获得积分10
12秒前
jonghuang发布了新的文献求助10
13秒前
Skyrin完成签到,获得积分0
13秒前
晓晓发布了新的文献求助10
14秒前
张勇振完成签到,获得积分10
15秒前
Hello应助wangqing采纳,获得10
15秒前
16秒前
万能图书馆应助科研牛马采纳,获得10
16秒前
luis应助mayun95采纳,获得10
17秒前
18秒前
apple9515完成签到 ,获得积分10
18秒前
18秒前
星辰大海应助快乐冬灵采纳,获得10
19秒前
SciGPT应助会撒娇的天抒采纳,获得10
20秒前
躞蹀完成签到,获得积分10
20秒前
巴拉巴拉完成签到 ,获得积分10
20秒前
wishes完成签到 ,获得积分10
21秒前
适合初七发布了新的文献求助10
21秒前
21秒前
我行我素完成签到,获得积分10
21秒前
晓晓完成签到,获得积分10
22秒前
22秒前
wangqing发布了新的文献求助20
22秒前
22秒前
华仔应助dengdeng采纳,获得10
23秒前
dpp发布了新的文献求助10
23秒前
蓝胖子发布了新的文献求助20
25秒前
会撒娇的天抒完成签到,获得积分10
25秒前
BowieHuang应助下水道修理工采纳,获得10
27秒前
飘逸宛丝完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600631
求助须知:如何正确求助?哪些是违规求助? 4686248
关于积分的说明 14842519
捐赠科研通 4677270
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471207