Self-supervised domain adaptation for machinery remaining useful life prediction

适应(眼睛) 域适应 计算机科学 领域(数学分析) 人工智能 机器学习 心理学 数学 神经科学 数学分析 分类器(UML)
作者
Quy Le Xuan,Marco Munderloh,Jörn Östermann
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:250: 110296-110296
标识
DOI:10.1016/j.ress.2024.110296
摘要

Remaining useful life (RUL) prediction presents one of the most crucial tasks in modern machinery prognostics and health management systems. As a powerful data-driven solution, deep learning has shown its promising potential in accurately predicting the RUL based on historical condition monitoring data. However, deep learning-based methods typically require the training and test data to be drawn from the same distribution or domain, which is usually not the case in real-world application scenarios. Unsupervised domain adaptation (UDA) methods have been proposed to address this domain shift problem, but most of them focus only on learning domain-invariant feature representations while forcing the prediction error to be low on the source labeled data. Empirical observations have shown that this kind of domain adaptation is insufficient to guarantee good generalization in the target domain. To overcome this limitation, we propose a novel self-supervised domain adaptation (SSDA) framework that additionally incorporates the intrinsic information of the target domain data into the domain adaptation process without the need for its RUL labels. We developed a dual Siamese network-based training pipeline that enables the optimization for the self-supervised task in both the source and target domains to be realized jointly in conjunction with the base UDA objectives. Evaluation results from extensive experiments on the benchmark C-MAPSS dataset of aircraft turbofan engines show the superiority of our proposed framework over other state-of-the-art methods. On average, we achieve an improvement of 20.1% and 51.2% on two different performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牙签撬地球完成签到,获得积分0
刚刚
小葛完成签到,获得积分10
1秒前
ai豆的鱼完成签到,获得积分10
2秒前
3秒前
SciGPT应助乐观沛白采纳,获得10
5秒前
haowu发布了新的文献求助10
7秒前
9秒前
10秒前
完美世界应助阳光萝采纳,获得10
12秒前
嗯哼应助天天采纳,获得20
12秒前
今后应助大方太清采纳,获得10
13秒前
14秒前
14秒前
gab发布了新的文献求助10
14秒前
Glngar应助范棒棒采纳,获得10
15秒前
16秒前
19秒前
熊孩子发布了新的文献求助40
19秒前
gab完成签到,获得积分10
19秒前
22秒前
23秒前
苗条新柔完成签到,获得积分20
23秒前
24秒前
YJM发布了新的文献求助10
24秒前
24秒前
研友_LX62KZ完成签到,获得积分10
24秒前
26秒前
大方太清发布了新的文献求助10
26秒前
surprise发布了新的文献求助10
27秒前
28秒前
研友_LX62KZ发布了新的文献求助10
28秒前
Owen应助野性的小懒虫采纳,获得10
28秒前
乐观沛白发布了新的文献求助10
29秒前
苗条新柔发布了新的文献求助10
32秒前
36秒前
37秒前
小蘑菇应助精明念瑶采纳,获得10
38秒前
alexproyas完成签到,获得积分10
39秒前
40秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919