Self-supervised domain adaptation for machinery remaining useful life prediction

适应(眼睛) 域适应 计算机科学 领域(数学分析) 人工智能 机器学习 心理学 数学 神经科学 分类器(UML) 数学分析
作者
Quy Le Xuan,Marco Munderloh,Jörn Östermann
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:250: 110296-110296
标识
DOI:10.1016/j.ress.2024.110296
摘要

Remaining useful life (RUL) prediction presents one of the most crucial tasks in modern machinery prognostics and health management systems. As a powerful data-driven solution, deep learning has shown its promising potential in accurately predicting the RUL based on historical condition monitoring data. However, deep learning-based methods typically require the training and test data to be drawn from the same distribution or domain, which is usually not the case in real-world application scenarios. Unsupervised domain adaptation (UDA) methods have been proposed to address this domain shift problem, but most of them focus only on learning domain-invariant feature representations while forcing the prediction error to be low on the source labeled data. Empirical observations have shown that this kind of domain adaptation is insufficient to guarantee good generalization in the target domain. To overcome this limitation, we propose a novel self-supervised domain adaptation (SSDA) framework that additionally incorporates the intrinsic information of the target domain data into the domain adaptation process without the need for its RUL labels. We developed a dual Siamese network-based training pipeline that enables the optimization for the self-supervised task in both the source and target domains to be realized jointly in conjunction with the base UDA objectives. Evaluation results from extensive experiments on the benchmark C-MAPSS dataset of aircraft turbofan engines show the superiority of our proposed framework over other state-of-the-art methods. On average, we achieve an improvement of 20.1% and 51.2% on two different performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winjay完成签到,获得积分10
1秒前
jinzhou发布了新的文献求助10
3秒前
粽子完成签到,获得积分10
5秒前
爆米花应助TT2022采纳,获得10
5秒前
5秒前
khlkkfc发布了新的文献求助10
6秒前
结实的泥猴桃完成签到 ,获得积分10
6秒前
英俊的铭应助小白采纳,获得10
7秒前
月光入梦完成签到 ,获得积分10
8秒前
浮游应助小野菌采纳,获得10
9秒前
田様应助123321采纳,获得10
9秒前
10秒前
10秒前
导师老八发布了新的文献求助30
10秒前
小二郎应助略略略采纳,获得10
11秒前
11秒前
JX完成签到,获得积分10
13秒前
田様应助溪泉采纳,获得10
13秒前
15秒前
15秒前
16秒前
芒果发布了新的文献求助10
18秒前
18秒前
哈哈驳回了所所应助
19秒前
鬼笔环肽应助更深的蓝采纳,获得50
19秒前
20秒前
Leeyh完成签到,获得积分10
21秒前
21秒前
略略略发布了新的文献求助10
21秒前
22秒前
22秒前
导师老八发布了新的文献求助10
22秒前
云柔竹劲发布了新的文献求助10
24秒前
123321发布了新的文献求助10
25秒前
25秒前
wsj发布了新的文献求助30
28秒前
领导范儿应助木木采纳,获得10
29秒前
星辰大海应助神樂彩兔采纳,获得10
29秒前
天天快乐应助心海采纳,获得10
29秒前
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146677
求助须知:如何正确求助?哪些是违规求助? 4343554
关于积分的说明 13527098
捐赠科研通 4184701
什么是DOI,文献DOI怎么找? 2294782
邀请新用户注册赠送积分活动 1295250
关于科研通互助平台的介绍 1238341