已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Particle Size Detection System Based on RGB-Laser Fusion Segmentation With Feature Dual-Recalibration for Blast Furnace Materials

特征(语言学) 人工智能 分割 RGB颜色模型 计算机科学 粒径 模式识别(心理学) 计算机视觉 工程类 语言学 化学工程 哲学
作者
Jinshi Liu,Zhaohui Jiang,Weihua Gui,Zhiwen Chen
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (10): 10690-10699
标识
DOI:10.1109/tie.2022.3219054
摘要

Particle size detection (PSD) is used to obtain the particle size distribution of materials in the blast furnace charging process, which is significant for optimizing the gas flow distribution and ensuring stable production. However, due to the complex surface texture of the materials and the uneven illumination of the production environment, existing methods have difficulty obtaining the particle size distribution efficiently. This paper proposes an end-to-end PSD system based on image segmentation to obtain the particle size distribution online with high accuracy. First, to further enhance the expression of edge features and reduce the interference of complex textures, an RGB-laser particle segmentation network (RLPNet) is developed to obtain high-precision segmentation images by camera-LiDAR sensor fusion. Moreover, to improve the fusion of RGB and laser features, a feature dual-recalibration (FDR) module was designed and embedded in RLPNet, consisting of independent recalibration and joint recalibration with T-convolution. Finally, to reduce the error caused by missing edge particle pixels, an edge-recognition-based particle size calculation strategy (ERP) is presented. Experimental results demonstrate that the proposed method performs well on the constructed dataset and in industrial applications. With the segmentation accuracy of RLPNet reaching 64.19 $\%$ , the similarity between the particle size distribution predicted with ERP and the actual distribution reaches 79.19 $\%$ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助harry采纳,获得10
2秒前
3秒前
3秒前
没烦恼发布了新的文献求助10
4秒前
星期五13完成签到 ,获得积分10
4秒前
Hello应助歪比巴卜采纳,获得30
5秒前
wop111发布了新的文献求助10
6秒前
6秒前
ShuangqingYE完成签到,获得积分10
6秒前
7秒前
10秒前
服了您完成签到 ,获得积分10
10秒前
12秒前
Sym发布了新的文献求助10
13秒前
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
lige完成签到 ,获得积分10
14秒前
Akim应助wop111采纳,获得10
14秒前
隐形曼青应助幽默白秋采纳,获得30
15秒前
Sym完成签到,获得积分10
18秒前
NEO完成签到 ,获得积分10
18秒前
LMY完成签到 ,获得积分10
18秒前
19秒前
歪比巴卜完成签到,获得积分20
21秒前
22秒前
22秒前
22秒前
Chouvikin完成签到,获得积分10
23秒前
晟sheng完成签到 ,获得积分10
23秒前
24秒前
monster完成签到 ,获得积分10
26秒前
大王完成签到,获得积分10
26秒前
甜蜜邑发布了新的文献求助10
27秒前
大模型应助南山采纳,获得10
27秒前
27秒前
朱帅发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944474
求助须知:如何正确求助?哪些是违规求助? 4209382
关于积分的说明 13085189
捐赠科研通 3989085
什么是DOI,文献DOI怎么找? 2183984
邀请新用户注册赠送积分活动 1199325
关于科研通互助平台的介绍 1112262