The use of multi-sensor satellite imagery to analyze flood events and land cover changes using change detection and machine learning techniques in the Barito watershed

变更检测 分水岭 大洪水 漫滩 土地覆盖 环境科学 卫星图像 遥感 洪水(心理学) 水文学(农业) 土地利用 随机森林 地理 地图学 计算机科学 人工智能 地质学 机器学习 生态学 考古 生物 岩土工程 心理学 心理治疗师
作者
Muhammad Priyatna,Sastra Kusuma Wijaya,Muhammad Rokhis Khomarudin,Fajar Awalia Yulianto,Gatot Nugroho,Pingkan Mayestika Afgatiani,Anisa Rarasati,Muhammad Arfin Hussein
出处
期刊:Journal of Degraded and Mining Lands Management [International Research Centre for the Management of Degraded and Mining Lands]
卷期号:10 (2): 4073-4073 被引量:6
标识
DOI:10.15243/jdmlm.2023.102.4073
摘要

Indonesia is one of the countries in the world that is frequently affected by floods. Flood disasters can have various negative impacts and therefore need to be analyzed to determine prevention and mitigation measures. This study examined land cover change, flood detection, and flood distribution using multitemporal Sentinel-1 and Landsat-8 satellite imagery in the Barito watershed. A combination of change detection and the application of the Otsu algorithm was used to detect floodplains from Sentinel-1 imagery. Land use/land cover (LULC) changes are detected using a combination of change detection and machine learning in the form of a random forest algorithm. The overlay technique was used to analyze the distribution of floodplains. In this study, the floodplain in the study area was mapped to 109,623 ha. The change detection method detects a decrease in the areas of primary forest, secondary forest, fields, rice fields, shrubs and ponds, respectively, by 13,020 ha, 116,235 ha, 259 ha, 146,696 ha, 47,308 ha, and 9,601 ha. Settlements, bare land, plantations and water bodies increase by 14,879 ha, 64,830 ha, 218,916 ha, and 34,768 ha, respectively. Flooding was mainly found in the classes of rice fields, water bodies and primary forests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KQ发布了新的文献求助10
1秒前
dropofwater完成签到,获得积分10
1秒前
FRANKFANG发布了新的文献求助30
1秒前
guulee完成签到,获得积分10
1秒前
小蓝莓完成签到,获得积分10
1秒前
bkagyin应助小卡拉米采纳,获得10
1秒前
2秒前
2秒前
wang完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI2S应助liu采纳,获得20
3秒前
3秒前
晓风残月完成签到,获得积分10
4秒前
4秒前
酷波er应助kdfdds采纳,获得10
4秒前
桐桐应助xiaojinzi采纳,获得10
4秒前
4秒前
卡卡西西西完成签到,获得积分10
5秒前
5秒前
6秒前
愉快的老三完成签到,获得积分10
6秒前
up关闭了up文献求助
7秒前
7秒前
7秒前
7秒前
冷酷紫蓝发布了新的文献求助10
7秒前
7秒前
7秒前
高高高发布了新的文献求助10
8秒前
8秒前
SSY发布了新的文献求助10
9秒前
10秒前
taff发布了新的文献求助10
10秒前
Xl发布了新的文献求助10
10秒前
10秒前
smm发布了新的文献求助10
10秒前
QiuQiu发布了新的文献求助10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233