Quantitative Mass Spectrometry Imaging Using Multivariate Curve Resolution and Deep Learning: A Case Study

多元统计 质谱成像 质谱法 人工智能 模式识别(心理学) 化学 像素 卷积神经网络 偏最小二乘回归 支持向量机 校准 样品(材料) 分辨率(逻辑) 基质辅助激光解吸/电离 生物系统 色谱法 计算机科学 机器学习 统计 数学 解吸 吸附 生物 有机化学
作者
Fatemeh Golpelichi,Hadi Parastar
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (2): 236-244 被引量:1
标识
DOI:10.1021/jasms.2c00268
摘要

In the present contribution, a novel approach based on multivariate curve resolution and deep learning (DL) is proposed for quantitative mass spectrometry imaging (MSI) as a potent technique for identifying different compounds and creating their distribution maps in biological tissues without need for sample preparation. As a case study, chlordecone as a carcinogenic pesticide was quantitatively determined in mouse liver using matrix-assisted laser desorption ionization-MSI (MALDI-MSI). For this purpose, data from seven standard spots containing 0 to 20 picomoles of chlordecone and four unknown tissues from the mouse livers infected with chlordecone for 1, 5, and 10 days were analyzed using a convolutional neural network (CNN). To solve the lack of sufficient data for CNN model training, each pixel was considered as a sample, the designed CNN models were trained by pixels in training sets, and their corresponding amounts of chlordecone were obtained by multivariate curve resolution-alternating least-squares (MCR-ALS). The trained models were then externally evaluated using calibration pixels in test sets for 1, 5, and 10 days of exposure, respectively. Prediction R2 for all three data sets ranged from 0.93 to 0.96, which was superior to support vector machine (SVM) and partial least-squares (PLS). The trained CNN models were finally used to predict the amount of chlordecone in mouse liver tissues, and their results were compared with MALDI-MSI and GC-MS methods, which were comparable. Inspection of the results confirmed the validity of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
free完成签到,获得积分10
刚刚
彭于晏应助搞怪的萃采纳,获得10
刚刚
yy发布了新的文献求助10
刚刚
Cozy发布了新的文献求助10
1秒前
苏桑焉完成签到 ,获得积分10
1秒前
1秒前
绿大暗完成签到,获得积分10
1秒前
雨寒完成签到 ,获得积分10
1秒前
orixero应助曹鹏喜采纳,获得10
2秒前
希达通完成签到 ,获得积分10
2秒前
2秒前
852应助Lin采纳,获得10
2秒前
2秒前
跳跃的戒指完成签到,获得积分10
3秒前
阿甘完成签到,获得积分10
3秒前
林洁佳完成签到,获得积分10
3秒前
3秒前
求求科研完成签到,获得积分10
3秒前
4秒前
睡觉啦发布了新的文献求助10
4秒前
liujiahao完成签到,获得积分10
4秒前
听雪冬眠完成签到,获得积分10
4秒前
西窗同学完成签到,获得积分10
5秒前
不是省油的灯完成签到,获得积分10
5秒前
5秒前
坚果完成签到,获得积分10
5秒前
林洁佳发布了新的文献求助10
5秒前
6秒前
冷傲的山菡完成签到,获得积分10
6秒前
6秒前
顺利科研毕业完成签到,获得积分10
6秒前
7秒前
7秒前
大个应助陈曦读研版采纳,获得10
7秒前
orixero应助OrangeBlueHeart采纳,获得10
7秒前
儒雅厉完成签到,获得积分10
8秒前
白白发布了新的文献求助10
8秒前
李林鑫完成签到 ,获得积分10
8秒前
8秒前
甜蜜靖雁发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188