Quantitative Mass Spectrometry Imaging Using Multivariate Curve Resolution and Deep Learning: A Case Study

多元统计 质谱成像 质谱法 人工智能 模式识别(心理学) 化学 像素 卷积神经网络 偏最小二乘回归 支持向量机 校准 样品(材料) 分辨率(逻辑) 基质辅助激光解吸/电离 生物系统 色谱法 计算机科学 机器学习 统计 数学 解吸 吸附 生物 有机化学
作者
Fatemeh Golpelichi,Hadi Parastar
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (2): 236-244 被引量:1
标识
DOI:10.1021/jasms.2c00268
摘要

In the present contribution, a novel approach based on multivariate curve resolution and deep learning (DL) is proposed for quantitative mass spectrometry imaging (MSI) as a potent technique for identifying different compounds and creating their distribution maps in biological tissues without need for sample preparation. As a case study, chlordecone as a carcinogenic pesticide was quantitatively determined in mouse liver using matrix-assisted laser desorption ionization-MSI (MALDI-MSI). For this purpose, data from seven standard spots containing 0 to 20 picomoles of chlordecone and four unknown tissues from the mouse livers infected with chlordecone for 1, 5, and 10 days were analyzed using a convolutional neural network (CNN). To solve the lack of sufficient data for CNN model training, each pixel was considered as a sample, the designed CNN models were trained by pixels in training sets, and their corresponding amounts of chlordecone were obtained by multivariate curve resolution-alternating least-squares (MCR-ALS). The trained models were then externally evaluated using calibration pixels in test sets for 1, 5, and 10 days of exposure, respectively. Prediction R2 for all three data sets ranged from 0.93 to 0.96, which was superior to support vector machine (SVM) and partial least-squares (PLS). The trained CNN models were finally used to predict the amount of chlordecone in mouse liver tissues, and their results were compared with MALDI-MSI and GC-MS methods, which were comparable. Inspection of the results confirmed the validity of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜孜发布了新的文献求助10
刚刚
刚刚
赫连紫发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
英姑应助Aurora采纳,获得10
1秒前
165完成签到,获得积分10
2秒前
科研通AI6应助酷酷若蕊采纳,获得10
2秒前
今后应助瑶瑶奶昔采纳,获得10
2秒前
YooM发布了新的文献求助10
4秒前
大鱼完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
青年才俊发布了新的文献求助10
5秒前
烟花应助davidz采纳,获得10
5秒前
J1Ang发布了新的文献求助10
6秒前
lucky关注了科研通微信公众号
6秒前
auiin关注了科研通微信公众号
6秒前
嘚嘚发布了新的文献求助10
7秒前
小曾发布了新的文献求助10
7秒前
qll关闭了qll文献求助
8秒前
Marshall发布了新的文献求助50
8秒前
小二郎应助小马宝莉采纳,获得30
9秒前
英姑应助豆子采纳,获得10
9秒前
keleboys发布了新的文献求助10
9秒前
痘痘不见了331完成签到,获得积分10
9秒前
worrying91发布了新的文献求助10
9秒前
lzh完成签到,获得积分10
10秒前
Nova发布了新的文献求助10
11秒前
Akim应助小番茄采纳,获得10
11秒前
12秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
曾经二娘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769630
求助须知:如何正确求助?哪些是违规求助? 5580702
关于积分的说明 15422304
捐赠科研通 4903300
什么是DOI,文献DOI怎么找? 2638156
邀请新用户注册赠送积分活动 1586055
关于科研通互助平台的介绍 1541154