Quantitative Mass Spectrometry Imaging Using Multivariate Curve Resolution and Deep Learning: A Case Study

多元统计 质谱成像 质谱法 人工智能 模式识别(心理学) 化学 像素 卷积神经网络 偏最小二乘回归 支持向量机 校准 样品(材料) 分辨率(逻辑) 基质辅助激光解吸/电离 生物系统 色谱法 计算机科学 机器学习 统计 数学 解吸 吸附 生物 有机化学
作者
Fatemeh Golpelichi,Hadi Parastar
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (2): 236-244 被引量:1
标识
DOI:10.1021/jasms.2c00268
摘要

In the present contribution, a novel approach based on multivariate curve resolution and deep learning (DL) is proposed for quantitative mass spectrometry imaging (MSI) as a potent technique for identifying different compounds and creating their distribution maps in biological tissues without need for sample preparation. As a case study, chlordecone as a carcinogenic pesticide was quantitatively determined in mouse liver using matrix-assisted laser desorption ionization-MSI (MALDI-MSI). For this purpose, data from seven standard spots containing 0 to 20 picomoles of chlordecone and four unknown tissues from the mouse livers infected with chlordecone for 1, 5, and 10 days were analyzed using a convolutional neural network (CNN). To solve the lack of sufficient data for CNN model training, each pixel was considered as a sample, the designed CNN models were trained by pixels in training sets, and their corresponding amounts of chlordecone were obtained by multivariate curve resolution-alternating least-squares (MCR-ALS). The trained models were then externally evaluated using calibration pixels in test sets for 1, 5, and 10 days of exposure, respectively. Prediction R2 for all three data sets ranged from 0.93 to 0.96, which was superior to support vector machine (SVM) and partial least-squares (PLS). The trained CNN models were finally used to predict the amount of chlordecone in mouse liver tissues, and their results were compared with MALDI-MSI and GC-MS methods, which were comparable. Inspection of the results confirmed the validity of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助大力的发夹采纳,获得10
3秒前
搜集达人应助hhh采纳,获得10
3秒前
3秒前
aaaaaa发布了新的文献求助10
4秒前
5秒前
sxhlrm发布了新的文献求助10
6秒前
雨柏完成签到 ,获得积分10
8秒前
颜朗完成签到,获得积分10
9秒前
9秒前
Jasper应助ii采纳,获得30
9秒前
wanci应助aaaaaa采纳,获得10
10秒前
迷路的八宝粥完成签到,获得积分10
12秒前
12秒前
li发布了新的文献求助10
15秒前
16秒前
yzw1111111完成签到,获得积分10
18秒前
可靠奇异果完成签到,获得积分10
19秒前
匆匆走过完成签到,获得积分10
22秒前
Sunshine完成签到 ,获得积分10
23秒前
JamesPei应助老叶采纳,获得10
23秒前
FR发布了新的文献求助10
23秒前
23秒前
li完成签到,获得积分10
24秒前
Xee发布了新的文献求助10
27秒前
zitian发布了新的文献求助50
29秒前
30秒前
31秒前
绝对不倒霉的人完成签到 ,获得积分10
34秒前
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
852应助chang采纳,获得10
35秒前
乐乐应助科研通管家采纳,获得10
35秒前
脑洞疼应助科研通管家采纳,获得10
35秒前
小马甲应助科研通管家采纳,获得10
35秒前
YHY应助科研通管家采纳,获得10
35秒前
天天快乐应助科研通管家采纳,获得10
35秒前
充电宝应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
Lucas应助科研通管家采纳,获得10
35秒前
姜姜发布了新的文献求助10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517