Quantitative Mass Spectrometry Imaging Using Multivariate Curve Resolution and Deep Learning: A Case Study

多元统计 质谱成像 质谱法 人工智能 模式识别(心理学) 化学 像素 卷积神经网络 偏最小二乘回归 支持向量机 校准 样品(材料) 分辨率(逻辑) 基质辅助激光解吸/电离 生物系统 色谱法 计算机科学 机器学习 统计 数学 解吸 吸附 生物 有机化学
作者
Fatemeh Golpelichi,Hadi Parastar
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (2): 236-244 被引量:1
标识
DOI:10.1021/jasms.2c00268
摘要

In the present contribution, a novel approach based on multivariate curve resolution and deep learning (DL) is proposed for quantitative mass spectrometry imaging (MSI) as a potent technique for identifying different compounds and creating their distribution maps in biological tissues without need for sample preparation. As a case study, chlordecone as a carcinogenic pesticide was quantitatively determined in mouse liver using matrix-assisted laser desorption ionization-MSI (MALDI-MSI). For this purpose, data from seven standard spots containing 0 to 20 picomoles of chlordecone and four unknown tissues from the mouse livers infected with chlordecone for 1, 5, and 10 days were analyzed using a convolutional neural network (CNN). To solve the lack of sufficient data for CNN model training, each pixel was considered as a sample, the designed CNN models were trained by pixels in training sets, and their corresponding amounts of chlordecone were obtained by multivariate curve resolution-alternating least-squares (MCR-ALS). The trained models were then externally evaluated using calibration pixels in test sets for 1, 5, and 10 days of exposure, respectively. Prediction R2 for all three data sets ranged from 0.93 to 0.96, which was superior to support vector machine (SVM) and partial least-squares (PLS). The trained CNN models were finally used to predict the amount of chlordecone in mouse liver tissues, and their results were compared with MALDI-MSI and GC-MS methods, which were comparable. Inspection of the results confirmed the validity of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的薯片应助lyt采纳,获得20
刚刚
sweetbearm应助寒涛先生采纳,获得10
1秒前
wanci应助YY采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
HC完成签到 ,获得积分10
5秒前
姚姚的赵赵完成签到,获得积分10
5秒前
JamesPei应助大豪子采纳,获得30
6秒前
jy发布了新的文献求助10
6秒前
6秒前
陆靖易发布了新的文献求助10
6秒前
LQW完成签到,获得积分20
7秒前
8秒前
plant完成签到,获得积分10
8秒前
lyt完成签到,获得积分10
8秒前
9秒前
10秒前
敏感网络完成签到,获得积分20
11秒前
kh453发布了新的文献求助10
11秒前
11秒前
子爵木完成签到 ,获得积分10
11秒前
HC发布了新的文献求助30
12秒前
无限鞅发布了新的文献求助10
12秒前
SherlockLiu完成签到,获得积分20
12秒前
13秒前
吴岳发布了新的文献求助10
14秒前
陆靖易完成签到,获得积分10
14秒前
16秒前
Bella完成签到 ,获得积分10
16秒前
yhl发布了新的文献求助10
17秒前
18秒前
震动的乐天完成签到,获得积分10
19秒前
20秒前
21秒前
Hello应助xuanxuan采纳,获得10
22秒前
村长热爱美丽完成签到 ,获得积分10
22秒前
一衣完成签到,获得积分20
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808