A deep learning based method for automatic analysis of high-throughput droplet digital PCR images

吞吐量 计算机科学 人工智能 模式识别(心理学) 深度学习 电信 无线
作者
Haixu Yang,Jiahui Yu,Luhong Jin,Yunpeng Zhao,Qi Gao,Changrong Shi,Lei Ye,Dong Li,Hai Yu,Yingke Xu
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:148 (2): 239-247 被引量:7
标识
DOI:10.1039/d2an01631a
摘要

Droplet digital PCR (ddPCR) is a technique for absolute quantification of nucleic acid molecules and is widely used in biomedical research and clinical diagnosis. ddPCR partitions the reaction solution containing target molecules into a large number of independent microdroplets for amplification and performs quantitative analysis of target molecules by calculating the proportion of positive droplets by the principle of Poisson distribution. Accurate recognition of positive droplets in ddPCR images is of great importance to guarantee the accuracy of target nucleic acid quantitative analysis. However, hand-designed operators are sensitive to interference and have disadvantages such as low contrast, uneven illumination, low sample copy number, and noise, and their accuracy and robustness still need to be improved. Herein, we developed a deep learning-based high-throughput ddPCR droplet detection framework for robust and accurate ddPCR image analysis, and the experimental results show that our method achieves excellent performance in the recognition of positive droplets (99.71%) within a limited time. By combining the Hough transform and a convolutional neural network (CNN), our novel method can automatically filter out invalid droplets that are difficult to be identified by local or global encoding methods and realize high-precision localization and classification of droplets in ddPCR images under variable exposure, contrast, and uneven illumination conditions without the need for image pre-processing and normalization processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助shikaly采纳,获得10
1秒前
3秒前
CCCCPUTA发布了新的文献求助10
6秒前
6秒前
8秒前
宜醉宜游宜睡应助CLY采纳,获得10
9秒前
糊涂涂完成签到 ,获得积分10
10秒前
10秒前
半胱氨酸发布了新的文献求助10
11秒前
13秒前
塑料做的蜻蜓完成签到,获得积分10
15秒前
16秒前
16秒前
半胱氨酸完成签到,获得积分10
16秒前
18秒前
yry发布了新的文献求助10
20秒前
个性的大地完成签到,获得积分10
21秒前
shikaly发布了新的文献求助10
21秒前
22秒前
23秒前
白野发布了新的文献求助30
25秒前
吾问无为谓啊完成签到,获得积分10
25秒前
然然发布了新的文献求助10
27秒前
情木花肆发布了新的文献求助10
28秒前
科研通AI2S应助轩然采纳,获得10
28秒前
汉堡包应助轩然采纳,获得10
28秒前
FashionBoy应助yry采纳,获得10
28秒前
30秒前
30秒前
祭礼之龙完成签到,获得积分10
31秒前
勤劳元瑶完成签到,获得积分10
32秒前
RNAPW发布了新的文献求助10
32秒前
33秒前
文静冷梅发布了新的文献求助10
35秒前
南风似潇发布了新的文献求助10
35秒前
36秒前
然然完成签到,获得积分10
36秒前
36秒前
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358140
求助须知:如何正确求助?哪些是违规求助? 2981312
关于积分的说明 8698638
捐赠科研通 2662919
什么是DOI,文献DOI怎么找? 1458178
科研通“疑难数据库(出版商)”最低求助积分说明 675060
邀请新用户注册赠送积分活动 666078