Study of a deep learning-based method for improving the spectral resolution of the spectral scanning hyperspectral imaging system via synthetic spectral image data

高光谱成像 多光谱图像 人工智能 计算机科学 全光谱成像 光谱成像 液晶可调谐滤波器 深度学习 光谱分辨率 基本事实 光谱带 遥感 滤波器(信号处理) 模式识别(心理学) 计算机视觉 成像光谱仪 分光计 光学 谱线 地理 物理 天文 波长
作者
Suhyun Kim,Sang-Woon Jung,Jonghee Yoon
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:56 (5): 054005-054005 被引量:1
标识
DOI:10.1088/1361-6463/acae31
摘要

Abstract Hyperspectral imaging (HSI) techniques, measuring spatial and spectral information, have shown the ability to identify targets based on their spectral features. Among many HSI methods, a spectral scanning HSI method implemented using a tunable filter has been widely used in various applications due to wide-area HSI capability and cost-effectiveness. However, the limitation of the spectral scanning method is poor spectral resolution compared to other spectral imaging methods using dispersive materials. To overcome this limitation, we exploited a recently developed deep-learning model that retrieves multispectral information from an red, green, and blue image. Moreover, this study proposed that a color chart consisting of 18 colors could be a standard target for training the deep-learning model under various spectral scanning HSI conditions. The simulation work was performed to demonstrate the feasibility of the proposed method using synthetic hyperspectral images. Realistic synthetic data was prepared using spectral data obtained via a spectrometer (ground-truth data) and artificial filters emulating a liquid-crystal tunable filter. We found that the deep-learning model trained via a supervised learning approach using synthetic hyperspectral images successfully retrieved high-resolution spectral data. In addition, the trained deep-learning model retrieved robust spectral profiles of random colors which were not used in the training process. Collectively, the deep learning-based spectral scanning method could improve the spectral resolution of the imaging system, and the color chart would be a good and practical standard training target for the deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珈蓝完成签到,获得积分10
3秒前
7秒前
科研通AI2S应助mbf采纳,获得10
10秒前
10秒前
白华苍松发布了新的文献求助10
10秒前
深情安青应助冰凌心恋采纳,获得10
11秒前
大尾巴完成签到 ,获得积分10
13秒前
脑洞疼应助彩色伯云采纳,获得30
14秒前
15秒前
16秒前
领导范儿应助大海采纳,获得10
16秒前
20秒前
myp完成签到,获得积分10
20秒前
千山完成签到,获得积分10
20秒前
andy发布了新的文献求助10
20秒前
22秒前
24秒前
芹菜煎蛋发布了新的文献求助10
27秒前
28秒前
科研通AI2S应助kkk采纳,获得10
28秒前
30秒前
今后应助andy采纳,获得10
31秒前
34秒前
LYY发布了新的文献求助10
34秒前
噜啦噜啦嘞完成签到,获得积分10
35秒前
彩色伯云发布了新的文献求助30
37秒前
海4015发布了新的文献求助10
38秒前
39秒前
41秒前
瘪良科研完成签到,获得积分10
45秒前
大海发布了新的文献求助10
45秒前
46秒前
科研通AI2S应助安详的冰彤采纳,获得10
49秒前
52秒前
53秒前
15867589086发布了新的文献求助10
59秒前
Caism发布了新的文献求助10
1分钟前
Shueason完成签到 ,获得积分10
1分钟前
英俊的铭应助魔幻的依云采纳,获得10
1分钟前
小景007完成签到,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340656
求助须知:如何正确求助?哪些是违规求助? 2968590
关于积分的说明 8634286
捐赠科研通 2648111
什么是DOI,文献DOI怎么找? 1450010
科研通“疑难数据库(出版商)”最低求助积分说明 671649
邀请新用户注册赠送积分活动 660693