Study of a deep learning-based method for improving the spectral resolution of the spectral scanning hyperspectral imaging system via synthetic spectral image data

高光谱成像 多光谱图像 人工智能 计算机科学 全光谱成像 光谱成像 液晶可调谐滤波器 深度学习 光谱分辨率 基本事实 光谱带 遥感 滤波器(信号处理) 模式识别(心理学) 计算机视觉 成像光谱仪 分光计 光学 谱线 地理 物理 天文 波长
作者
Suhyun Kim,Sang-Woon Jung,Jonghee Yoon
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:56 (5): 054005-054005 被引量:1
标识
DOI:10.1088/1361-6463/acae31
摘要

Abstract Hyperspectral imaging (HSI) techniques, measuring spatial and spectral information, have shown the ability to identify targets based on their spectral features. Among many HSI methods, a spectral scanning HSI method implemented using a tunable filter has been widely used in various applications due to wide-area HSI capability and cost-effectiveness. However, the limitation of the spectral scanning method is poor spectral resolution compared to other spectral imaging methods using dispersive materials. To overcome this limitation, we exploited a recently developed deep-learning model that retrieves multispectral information from an red, green, and blue image. Moreover, this study proposed that a color chart consisting of 18 colors could be a standard target for training the deep-learning model under various spectral scanning HSI conditions. The simulation work was performed to demonstrate the feasibility of the proposed method using synthetic hyperspectral images. Realistic synthetic data was prepared using spectral data obtained via a spectrometer (ground-truth data) and artificial filters emulating a liquid-crystal tunable filter. We found that the deep-learning model trained via a supervised learning approach using synthetic hyperspectral images successfully retrieved high-resolution spectral data. In addition, the trained deep-learning model retrieved robust spectral profiles of random colors which were not used in the training process. Collectively, the deep learning-based spectral scanning method could improve the spectral resolution of the imaging system, and the color chart would be a good and practical standard training target for the deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助靓仔要亮采纳,获得10
刚刚
keeryu完成签到,获得积分10
1秒前
崔尔蓉完成签到,获得积分10
1秒前
1秒前
luo发布了新的文献求助10
1秒前
2秒前
占那个完成签到 ,获得积分10
2秒前
2秒前
louge完成签到,获得积分10
3秒前
科研通AI6应助zzxx采纳,获得10
3秒前
4秒前
旧雨新知完成签到 ,获得积分10
4秒前
5秒前
walu完成签到,获得积分10
5秒前
彩色世倌发布了新的文献求助10
5秒前
Hohaha发布了新的文献求助10
6秒前
7秒前
7秒前
max完成签到,获得积分10
7秒前
快乐旭尧完成签到,获得积分10
10秒前
LXY171发布了新的文献求助20
10秒前
walu发布了新的文献求助20
10秒前
丁浩伦应助小火锅采纳,获得10
10秒前
QQ发布了新的文献求助10
11秒前
Hazel发布了新的文献求助10
13秒前
11111完成签到,获得积分10
13秒前
小蘑菇应助颜林林采纳,获得10
13秒前
小马完成签到,获得积分10
14秒前
顾矜应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
Zz应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得30
16秒前
科研通AI6应助madmax采纳,获得30
16秒前
16秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888