Study of a deep learning-based method for improving the spectral resolution of the spectral scanning hyperspectral imaging system via synthetic spectral image data

高光谱成像 多光谱图像 人工智能 计算机科学 全光谱成像 光谱成像 液晶可调谐滤波器 深度学习 光谱分辨率 基本事实 光谱带 遥感 滤波器(信号处理) 模式识别(心理学) 计算机视觉 成像光谱仪 分光计 光学 谱线 地理 物理 天文 波长
作者
Suhyun Kim,Sang-Woon Jung,Jonghee Yoon
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:56 (5): 054005-054005 被引量:1
标识
DOI:10.1088/1361-6463/acae31
摘要

Abstract Hyperspectral imaging (HSI) techniques, measuring spatial and spectral information, have shown the ability to identify targets based on their spectral features. Among many HSI methods, a spectral scanning HSI method implemented using a tunable filter has been widely used in various applications due to wide-area HSI capability and cost-effectiveness. However, the limitation of the spectral scanning method is poor spectral resolution compared to other spectral imaging methods using dispersive materials. To overcome this limitation, we exploited a recently developed deep-learning model that retrieves multispectral information from an red, green, and blue image. Moreover, this study proposed that a color chart consisting of 18 colors could be a standard target for training the deep-learning model under various spectral scanning HSI conditions. The simulation work was performed to demonstrate the feasibility of the proposed method using synthetic hyperspectral images. Realistic synthetic data was prepared using spectral data obtained via a spectrometer (ground-truth data) and artificial filters emulating a liquid-crystal tunable filter. We found that the deep-learning model trained via a supervised learning approach using synthetic hyperspectral images successfully retrieved high-resolution spectral data. In addition, the trained deep-learning model retrieved robust spectral profiles of random colors which were not used in the training process. Collectively, the deep learning-based spectral scanning method could improve the spectral resolution of the imaging system, and the color chart would be a good and practical standard training target for the deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助幸福大白采纳,获得30
1秒前
YJ888发布了新的文献求助10
1秒前
心灵美盼烟完成签到,获得积分20
2秒前
3秒前
5秒前
深情安青应助安详立果采纳,获得10
6秒前
9秒前
陈曦发布了新的文献求助10
9秒前
修辛发布了新的文献求助10
12秒前
佳佳应助好好好采纳,获得10
13秒前
Ava应助等一只ya采纳,获得10
15秒前
16秒前
17秒前
RA000完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
科研通AI5应助YJ888采纳,获得10
19秒前
是安山完成签到,获得积分10
19秒前
是安山发布了新的文献求助10
21秒前
21秒前
21秒前
YanK发布了新的文献求助10
22秒前
归尘发布了新的文献求助10
23秒前
Jay发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
老干部发布了新的文献求助10
25秒前
陈曦发布了新的文献求助10
25秒前
wweiweili完成签到,获得积分10
28秒前
28秒前
28秒前
hmd_150发布了新的文献求助10
28秒前
Sophiaye完成签到,获得积分10
29秒前
风趣依瑶完成签到 ,获得积分10
29秒前
wonder123发布了新的文献求助10
29秒前
Kavin完成签到,获得积分10
30秒前
KK关闭了KK文献求助
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176