Study of a deep learning-based method for improving the spectral resolution of the spectral scanning hyperspectral imaging system via synthetic spectral image data

高光谱成像 多光谱图像 人工智能 计算机科学 全光谱成像 光谱成像 液晶可调谐滤波器 深度学习 光谱分辨率 基本事实 光谱带 遥感 滤波器(信号处理) 模式识别(心理学) 计算机视觉 成像光谱仪 分光计 光学 谱线 地理 物理 天文 波长
作者
Suhyun Kim,Sang-Woon Jung,Jonghee Yoon
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:56 (5): 054005-054005 被引量:1
标识
DOI:10.1088/1361-6463/acae31
摘要

Abstract Hyperspectral imaging (HSI) techniques, measuring spatial and spectral information, have shown the ability to identify targets based on their spectral features. Among many HSI methods, a spectral scanning HSI method implemented using a tunable filter has been widely used in various applications due to wide-area HSI capability and cost-effectiveness. However, the limitation of the spectral scanning method is poor spectral resolution compared to other spectral imaging methods using dispersive materials. To overcome this limitation, we exploited a recently developed deep-learning model that retrieves multispectral information from an red, green, and blue image. Moreover, this study proposed that a color chart consisting of 18 colors could be a standard target for training the deep-learning model under various spectral scanning HSI conditions. The simulation work was performed to demonstrate the feasibility of the proposed method using synthetic hyperspectral images. Realistic synthetic data was prepared using spectral data obtained via a spectrometer (ground-truth data) and artificial filters emulating a liquid-crystal tunable filter. We found that the deep-learning model trained via a supervised learning approach using synthetic hyperspectral images successfully retrieved high-resolution spectral data. In addition, the trained deep-learning model retrieved robust spectral profiles of random colors which were not used in the training process. Collectively, the deep learning-based spectral scanning method could improve the spectral resolution of the imaging system, and the color chart would be a good and practical standard training target for the deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落寞晓灵完成签到,获得积分10
1秒前
ORAzzz应助翠翠采纳,获得20
2秒前
zoe完成签到,获得积分10
2秒前
习习应助学术小白采纳,获得10
2秒前
3秒前
4秒前
tianny关注了科研通微信公众号
5秒前
5秒前
CO2发布了新的文献求助10
5秒前
桐桐应助zhangscience采纳,获得10
6秒前
求助发布了新的文献求助10
7秒前
buno应助zoe采纳,获得10
8秒前
junzilan发布了新的文献求助10
8秒前
8秒前
细品岁月完成签到 ,获得积分10
8秒前
细心书蕾完成签到 ,获得积分10
9秒前
无花果应助l11x29采纳,获得10
11秒前
11秒前
老詹头发布了新的文献求助10
11秒前
思源应助叫滚滚采纳,获得10
12秒前
13秒前
刘歌完成签到 ,获得积分10
13秒前
阿巡完成签到,获得积分10
13秒前
Chen完成签到,获得积分10
15秒前
LSH970829发布了新的文献求助10
15秒前
哈哈哈完成签到 ,获得积分10
16秒前
汤姆完成签到,获得积分10
16秒前
18秒前
18秒前
翠翠完成签到,获得积分10
19秒前
19秒前
LSH970829完成签到,获得积分10
20秒前
Lyg完成签到,获得积分20
21秒前
坚强的樱发布了新的文献求助10
21秒前
baodingning完成签到,获得积分10
22秒前
22秒前
公茂源发布了新的文献求助30
22秒前
热爱完成签到,获得积分10
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808