Rumor detection with self-supervised learning on texts and social graph

谣言 计算机科学 串联(数学) 人工智能 监督学习 图形 任务(项目管理) 机器学习 社会化媒体 自然语言处理 情报检索 数据科学 人工神经网络 理论计算机科学 万维网 公共关系 数学 管理 组合数学 政治学 经济
作者
Yuan Gao,Xiang Wang,Xiangnan He,Huamin Feng,Yongdong Zhang
出处
期刊:Frontiers of Computer Science [Springer Nature]
卷期号:17 (4) 被引量:24
标识
DOI:10.1007/s11704-022-1531-9
摘要

Rumor detection has become an emerging and active research field in recent years. At the core is to model the rumor characteristics inherent in rich information, such as propagation patterns in social network and semantic patterns in post content, and differentiate them from the truth. However, existing works on rumor detection fall short in modeling heterogeneous information, either using one single information source only (e.g., social network, or post content) or ignoring the relations among multiple sources (e.g., fusing social and content features via simple concatenation). Therefore, they possibly have drawbacks in comprehensively understanding the rumors, and detecting them accurately. In this work, we explore contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better. Technically, we supplement the main supervised task of detection with an auxiliary self-supervised task, which enriches post representations via post self-discrimination. Specifically, given two heterogeneous views of a post (i.e., representations encoding social patterns and semantic patterns), the discrimination is done by maximizing the mutual information between different views of the same post compared to that of other posts. We devise cluster-wise and instance-wise approaches to generate the views and conduct the discrimination, considering different relations of information sources. We term this framework as self-supervised rumor detection (SRD). Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shiyue应助lj采纳,获得10
1秒前
啊哦发布了新的文献求助10
1秒前
嘴嘴发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
mini完成签到,获得积分10
3秒前
大模型应助mofeik采纳,获得10
4秒前
超级梦寒发布了新的文献求助10
5秒前
5秒前
Tobiuo完成签到,获得积分10
5秒前
元谷雪发布了新的文献求助10
5秒前
砺行应助RA000采纳,获得10
5秒前
王sy完成签到 ,获得积分10
6秒前
深蓝完成签到,获得积分10
7秒前
7秒前
阳光不二完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
guo发布了新的文献求助10
11秒前
爱科研168完成签到,获得积分10
11秒前
现代尔芙完成签到 ,获得积分10
11秒前
沐雪完成签到,获得积分10
11秒前
11秒前
考博圣体发布了新的文献求助10
11秒前
李健的粉丝团团长应助tgg采纳,获得10
12秒前
12秒前
搜集达人应助人机采纳,获得10
13秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
sss发布了新的文献求助10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
lzz完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360