Rumor detection with self-supervised learning on texts and social graph

谣言 计算机科学 串联(数学) 人工智能 监督学习 图形 任务(项目管理) 机器学习 社会化媒体 自然语言处理 情报检索 数据科学 人工神经网络 理论计算机科学 万维网 组合数学 政治学 公共关系 数学 经济 管理
作者
Yuan Gao,Xiang Wang,Xiangnan He,Huamin Feng,Yongdong Zhang
出处
期刊:Frontiers of Computer Science [Springer Nature]
卷期号:17 (4) 被引量:24
标识
DOI:10.1007/s11704-022-1531-9
摘要

Rumor detection has become an emerging and active research field in recent years. At the core is to model the rumor characteristics inherent in rich information, such as propagation patterns in social network and semantic patterns in post content, and differentiate them from the truth. However, existing works on rumor detection fall short in modeling heterogeneous information, either using one single information source only (e.g., social network, or post content) or ignoring the relations among multiple sources (e.g., fusing social and content features via simple concatenation). Therefore, they possibly have drawbacks in comprehensively understanding the rumors, and detecting them accurately. In this work, we explore contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better. Technically, we supplement the main supervised task of detection with an auxiliary self-supervised task, which enriches post representations via post self-discrimination. Specifically, given two heterogeneous views of a post (i.e., representations encoding social patterns and semantic patterns), the discrimination is done by maximizing the mutual information between different views of the same post compared to that of other posts. We devise cluster-wise and instance-wise approaches to generate the views and conduct the discrimination, considering different relations of information sources. We term this framework as self-supervised rumor detection (SRD). Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得30
刚刚
刚刚
毒翼完成签到,获得积分10
刚刚
刚刚
1秒前
科研木头人完成签到 ,获得积分10
1秒前
增缩减扩完成签到,获得积分10
1秒前
Henry应助IBMffff采纳,获得200
3秒前
能干豆芽发布了新的文献求助10
3秒前
楼亦玉完成签到,获得积分10
3秒前
潇洒的妙芙完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
小于完成签到,获得积分20
5秒前
AsRNA发布了新的文献求助10
5秒前
6秒前
huodian4发布了新的文献求助10
6秒前
ygx发布了新的文献求助10
7秒前
科研通AI2S应助两张采纳,获得10
7秒前
华仔应助成7采纳,获得10
7秒前
18746005898发布了新的文献求助10
7秒前
昵称待定发布了新的文献求助10
8秒前
威武鹤轩完成签到 ,获得积分10
8秒前
美丽的友卉完成签到,获得积分10
9秒前
鹿丫丫完成签到,获得积分10
9秒前
贝涛完成签到,获得积分10
10秒前
10秒前
静静子发布了新的文献求助10
11秒前
完美世界应助韩大大采纳,获得10
11秒前
猫咪老师应助zzzy采纳,获得30
12秒前
小琴子完成签到,获得积分10
13秒前
王昱旻发布了新的文献求助10
13秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217408
求助须知:如何正确求助?哪些是违规求助? 2866722
关于积分的说明 8152917
捐赠科研通 2533503
什么是DOI,文献DOI怎么找? 1366301
科研通“疑难数据库(出版商)”最低求助积分说明 644741
邀请新用户注册赠送积分活动 617717