Rumor detection with self-supervised learning on texts and social graph

谣言 计算机科学 串联(数学) 人工智能 监督学习 图形 任务(项目管理) 机器学习 社会化媒体 自然语言处理 情报检索 数据科学 人工神经网络 理论计算机科学 万维网 公共关系 数学 管理 组合数学 政治学 经济
作者
Yuan Gao,Xiang Wang,Xiangnan He,Huamin Feng,Yongdong Zhang
出处
期刊:Frontiers of Computer Science [Springer Nature]
卷期号:17 (4) 被引量:24
标识
DOI:10.1007/s11704-022-1531-9
摘要

Rumor detection has become an emerging and active research field in recent years. At the core is to model the rumor characteristics inherent in rich information, such as propagation patterns in social network and semantic patterns in post content, and differentiate them from the truth. However, existing works on rumor detection fall short in modeling heterogeneous information, either using one single information source only (e.g., social network, or post content) or ignoring the relations among multiple sources (e.g., fusing social and content features via simple concatenation). Therefore, they possibly have drawbacks in comprehensively understanding the rumors, and detecting them accurately. In this work, we explore contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better. Technically, we supplement the main supervised task of detection with an auxiliary self-supervised task, which enriches post representations via post self-discrimination. Specifically, given two heterogeneous views of a post (i.e., representations encoding social patterns and semantic patterns), the discrimination is done by maximizing the mutual information between different views of the same post compared to that of other posts. We devise cluster-wise and instance-wise approaches to generate the views and conduct the discrimination, considering different relations of information sources. We term this framework as self-supervised rumor detection (SRD). Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长颈鹿完成签到,获得积分10
1秒前
1秒前
慕青应助苏筱采纳,获得10
2秒前
Gates发布了新的文献求助10
2秒前
Orange应助忧伤的皮皮虾采纳,获得10
2秒前
泅渡完成签到,获得积分10
3秒前
学术黄金完成签到,获得积分10
3秒前
HUBU完成签到,获得积分10
3秒前
无极微光应助snow采纳,获得20
4秒前
4秒前
蛙蛙发布了新的文献求助10
5秒前
一只特立独行的朱完成签到,获得积分10
5秒前
5秒前
5秒前
英姑应助米奇妙妙吴采纳,获得10
5秒前
Blue发布了新的文献求助10
5秒前
陶醉的凤灵完成签到,获得积分10
6秒前
7秒前
merlinsong发布了新的文献求助10
7秒前
7秒前
7秒前
疯狂的娃哈哈完成签到 ,获得积分10
8秒前
江海小舟完成签到,获得积分10
8秒前
斯文败类应助自觉柠檬采纳,获得10
9秒前
Akim应助lyz666采纳,获得10
9秒前
混吃等死研究生完成签到,获得积分10
9秒前
9秒前
天月发布了新的文献求助20
9秒前
xiomnf完成签到,获得积分10
9秒前
于梦寒完成签到,获得积分10
9秒前
wjj完成签到,获得积分20
10秒前
orixero应助王蕊采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
西予发布了新的文献求助10
11秒前
minmin发布了新的文献求助10
11秒前
xzh完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Yvonne发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919