Machine learning-based predictive risk models for 30-day and 1-year mortality in severe aortic stenosis patients undergoing transcatheter aortic valve implantation

医学 接收机工作特性 弗雷明翰风险评分 内科学 狭窄 试验预测值 回顾性队列研究 心脏病学 射血分数 队列 死亡率 主动脉瓣狭窄 心力衰竭 疾病
作者
Piyoros Lertsanguansinchai,Ronpichai Chokesuwattanaskul,Aisawan Petchlorlian,Paramaporn Suttirut,Wacin Buddhari
出处
期刊:International Journal of Cardiology [Elsevier]
卷期号:374: 20-26 被引量:2
标识
DOI:10.1016/j.ijcard.2022.12.023
摘要

Predictive risk score for mortality plays an important role in the decision-making in patient selection and risk stratification for TAVI. Existing established predictive risk scores had poor discrimination performance in the prediction of mortality after the TAVI.The present study aimed to develop machine learning-based predictive models for 30-day and 1-year mortality in severe aortic stenosis patients undergoing TAVI.A total of 186 patients in a retrospective cohort study were analyzed. The models were fitted by a decision tree. Each model was tested in 100 iterations of 80:20 stratified random splitting into training/testing samples and 10-fold cross-validation.Variables that predict 30-day mortality are a set of factors driven mainly by height, chronic lung disease, STS score, preoperative LVEF, age, and preoperative LVOT VTI. Variables that predict 1-year mortality are a set of factors consisting of preoperative LVEF, STS score, heart rate, systolic blood pressure, home oxygen use, serum creatinine level, and preoperative LVOT Vmax. This decision tree-generated predictive models for 30-day and 1- year mortality provided the most precise accuracy of 0.97 and 0.90 with the AUC-ROC curves of 0.83 and 0.71 on 30-day and 1-year mortality on testing data and had better discrimination performance compared to the existing established TAVI predictive risk scores.These machine learning models show excellent accuracy and have a better prediction for 30-day and 1-year mortality than the existing established TAVI predictive risk scores. A customized predictive model deems to be properly developed for better risk discrimination among cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助keikeizi采纳,获得10
1秒前
四条发布了新的文献求助10
1秒前
文光完成签到,获得积分10
1秒前
砳熠完成签到 ,获得积分10
2秒前
2秒前
Dr_He应助自信的眉毛采纳,获得10
2秒前
3秒前
4秒前
早起吃饱多运动完成签到 ,获得积分10
5秒前
单薄的咖啡完成签到 ,获得积分10
6秒前
6秒前
洪武完成签到,获得积分10
6秒前
6秒前
山橘月发布了新的文献求助10
7秒前
8秒前
跳跃富完成签到,获得积分10
9秒前
10秒前
桐桐应助四条采纳,获得10
10秒前
所所应助桥桥采纳,获得10
11秒前
11秒前
11秒前
自觉的秋蝶完成签到,获得积分10
12秒前
12秒前
别吃我的鱼完成签到,获得积分10
12秒前
不安的松完成签到 ,获得积分10
12秒前
KingYugene发布了新的文献求助10
13秒前
脑洞疼应助冰箱里有灯采纳,获得10
14秒前
16秒前
科研通AI2S应助123采纳,获得10
17秒前
搜集达人应助小吴搞科研采纳,获得10
18秒前
星辰完成签到,获得积分10
18秒前
19秒前
赘婿应助Smallhetao采纳,获得10
21秒前
22秒前
22秒前
FashionBoy应助ccc采纳,获得10
22秒前
哈哈哈哈完成签到 ,获得积分10
24秒前
玩儿发布了新的文献求助10
25秒前
25秒前
嘟嘟发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023