Dynamic Weighted Filter Bank Domain Adaptation for Motor Imagery Brain–Computer Interfaces

计算机科学 脑-机接口 解码方法 运动表象 数据集 卷积神经网络 人工智能 过滤器组 滤波器(信号处理) 集合(抽象数据类型) 接口(物质) 模式识别(心理学) 计算机视觉 脑电图 算法 最大气泡压力法 气泡 精神科 并行计算 心理学 程序设计语言
作者
Yukun Zhang,Shuang Qiu,Wei Wei,Xuelin Ma,Hong He
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1348-1359 被引量:1
标识
DOI:10.1109/tcds.2022.3209801
摘要

A motor imagery (MI)-based brain–computer interface (BCI) is a promising system that can help neuromuscular injury patients recover or replace their motor abilities. Currently, before one uses MI-BCI, we need to collect a large amount of training data to train the decoding model, and this process is time consuming. When trained with a small amount of data, existing decoding methods generally do not perform well in MI decoding tasks. Therefore, it is important to improve the decoding performance with short calibration data. In this study, we propose a dynamic weighted filter bank domain adaptation framework that uses data from an existing subject to reduce the requirement of data from the new subject. A filter bank is used to explore information from different frequency subbands. A feature extractor with two 1-D convolutional layers is designed to extract electroencephalography features. The class-specific Wasserstein generative adversarial network (WGAN)-based domain adaptation network aligns the distribution of each class between the data from the new subject and the data from the existing subject. Additionally, we apply an attention network to dynamically allocate different weights for different frequency bands. We evaluate our method on a public MI data set and a self-collected data set. The experimental results show that the proposed method achieves the best decoding accuracy among the compared methods with different amounts of training data. On the public data set, our method achieves 8.88% and 7.16% higher decoding accuracy than the best comparing method with one block of training data on the two sessions, respectively. This indicates that our method can enhance MI decoding accuracy with a small amount of training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助guoguo1119采纳,获得10
刚刚
yyzhou应助l刘慧芳采纳,获得10
刚刚
1秒前
胡东东完成签到,获得积分10
2秒前
金兑关注了科研通微信公众号
2秒前
aaefv完成签到,获得积分10
2秒前
3秒前
3秒前
高青青发布了新的文献求助10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
math-naive发布了新的文献求助40
6秒前
my发布了新的文献求助10
6秒前
6秒前
7秒前
隔壁老王发布了新的文献求助80
8秒前
VDC发布了新的文献求助10
8秒前
qiu发布了新的文献求助10
9秒前
打打应助困困采纳,获得10
9秒前
10秒前
zhoujy完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
少7一点8发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
所所应助苹果熊猫采纳,获得10
15秒前
清蒸可达鸭完成签到,获得积分10
15秒前
啦啦啦完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940930
求助须知:如何正确求助?哪些是违规求助? 4206959
关于积分的说明 13076244
捐赠科研通 3985690
什么是DOI,文献DOI怎么找? 2182252
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110152