Dynamic Weighted Filter Bank Domain Adaptation for Motor Imagery Brain–Computer Interfaces

计算机科学 脑-机接口 解码方法 运动表象 数据集 卷积神经网络 人工智能 过滤器组 滤波器(信号处理) 集合(抽象数据类型) 接口(物质) 模式识别(心理学) 计算机视觉 脑电图 算法 最大气泡压力法 气泡 精神科 并行计算 心理学 程序设计语言
作者
Yukun Zhang,Shuang Qiu,Wei Wei,Xuelin Ma,Hong He
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1348-1359 被引量:1
标识
DOI:10.1109/tcds.2022.3209801
摘要

A motor imagery (MI)-based brain–computer interface (BCI) is a promising system that can help neuromuscular injury patients recover or replace their motor abilities. Currently, before one uses MI-BCI, we need to collect a large amount of training data to train the decoding model, and this process is time consuming. When trained with a small amount of data, existing decoding methods generally do not perform well in MI decoding tasks. Therefore, it is important to improve the decoding performance with short calibration data. In this study, we propose a dynamic weighted filter bank domain adaptation framework that uses data from an existing subject to reduce the requirement of data from the new subject. A filter bank is used to explore information from different frequency subbands. A feature extractor with two 1-D convolutional layers is designed to extract electroencephalography features. The class-specific Wasserstein generative adversarial network (WGAN)-based domain adaptation network aligns the distribution of each class between the data from the new subject and the data from the existing subject. Additionally, we apply an attention network to dynamically allocate different weights for different frequency bands. We evaluate our method on a public MI data set and a self-collected data set. The experimental results show that the proposed method achieves the best decoding accuracy among the compared methods with different amounts of training data. On the public data set, our method achieves 8.88% and 7.16% higher decoding accuracy than the best comparing method with one block of training data on the two sessions, respectively. This indicates that our method can enhance MI decoding accuracy with a small amount of training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
替我活着发布了新的文献求助10
1秒前
李健应助敬业乐群采纳,获得10
1秒前
找论文的牛马完成签到,获得积分10
1秒前
2秒前
2秒前
善良飞丹完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
4秒前
冷傲雪糕完成签到,获得积分10
4秒前
yun完成签到,获得积分10
5秒前
风格化橙发布了新的文献求助10
5秒前
CipherSage应助鲤鱼谷秋采纳,获得10
5秒前
6秒前
6秒前
Hydro发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
TYT发布了新的文献求助10
7秒前
绞股蓝发布了新的文献求助10
7秒前
汉堡包应助但行好事采纳,获得10
7秒前
yj完成签到,获得积分10
7秒前
7秒前
liuyuxin发布了新的文献求助10
8秒前
带头大哥应助认真的小笼包采纳,获得100
8秒前
old赵应助tooty采纳,获得10
8秒前
酷波er应助玖玖采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
AAAA发布了新的文献求助10
11秒前
风格化橙完成签到,获得积分10
11秒前
上官若男应助念念采纳,获得10
12秒前
看不懂发布了新的文献求助10
12秒前
酸xxx发布了新的文献求助10
12秒前
领导范儿应助丂枧采纳,获得10
12秒前
13秒前
小魏同学完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078