Dynamic Weighted Filter Bank Domain Adaptation for Motor Imagery Brain–Computer Interfaces

计算机科学 脑-机接口 解码方法 运动表象 数据集 卷积神经网络 人工智能 过滤器组 滤波器(信号处理) 集合(抽象数据类型) 接口(物质) 模式识别(心理学) 计算机视觉 脑电图 算法 最大气泡压力法 气泡 精神科 并行计算 心理学 程序设计语言
作者
Yukun Zhang,Shuang Qiu,Wei Wei,Xuelin Ma,Hong He
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1348-1359 被引量:1
标识
DOI:10.1109/tcds.2022.3209801
摘要

A motor imagery (MI)-based brain–computer interface (BCI) is a promising system that can help neuromuscular injury patients recover or replace their motor abilities. Currently, before one uses MI-BCI, we need to collect a large amount of training data to train the decoding model, and this process is time consuming. When trained with a small amount of data, existing decoding methods generally do not perform well in MI decoding tasks. Therefore, it is important to improve the decoding performance with short calibration data. In this study, we propose a dynamic weighted filter bank domain adaptation framework that uses data from an existing subject to reduce the requirement of data from the new subject. A filter bank is used to explore information from different frequency subbands. A feature extractor with two 1-D convolutional layers is designed to extract electroencephalography features. The class-specific Wasserstein generative adversarial network (WGAN)-based domain adaptation network aligns the distribution of each class between the data from the new subject and the data from the existing subject. Additionally, we apply an attention network to dynamically allocate different weights for different frequency bands. We evaluate our method on a public MI data set and a self-collected data set. The experimental results show that the proposed method achieves the best decoding accuracy among the compared methods with different amounts of training data. On the public data set, our method achieves 8.88% and 7.16% higher decoding accuracy than the best comparing method with one block of training data on the two sessions, respectively. This indicates that our method can enhance MI decoding accuracy with a small amount of training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
七月应助等待的忆翠采纳,获得10
4秒前
DDD发布了新的文献求助10
4秒前
传奇3应助叶宇豪采纳,获得10
6秒前
且做等春树完成签到,获得积分10
7秒前
7秒前
A666发布了新的文献求助10
7秒前
280应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
8秒前
280应助科研通管家采纳,获得10
9秒前
nancy应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得30
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
盛小铃发布了新的文献求助10
12秒前
12秒前
13秒前
方方发布了新的文献求助10
13秒前
皛川完成签到,获得积分20
13秒前
14秒前
CD完成签到,获得积分10
14秒前
15秒前
Ava应助糊涂的剑采纳,获得10
15秒前
Hunter发布了新的文献求助10
15秒前
16秒前
送你一匹马完成签到,获得积分10
16秒前
搜集达人应助lingxu采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
DDD完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632465
求助须知:如何正确求助?哪些是违规求助? 4726925
关于积分的说明 14982122
捐赠科研通 4790432
什么是DOI,文献DOI怎么找? 2558280
邀请新用户注册赠送积分活动 1518679
关于科研通互助平台的介绍 1479141