材料科学
纳米复合材料
超级电容器
三元运算
化学工程
碳纳米管
阴极
法拉第效率
电化学
纳米颗粒
纳米技术
电极
化学
物理化学
计算机科学
工程类
程序设计语言
作者
Swapnajit V. Mulik,Suprimkumar D. Dhas,A.V. Moholkar,Vinayak G. Parale,Hyung‐Ho Park,Pramod A. Koyale,Vijay S. Ghodake,Dillip K. Panda,Sagar D. Delekar
出处
期刊:ACS omega
[American Chemical Society]
日期:2023-01-04
卷期号:8 (2): 2183-2196
被引量:24
标识
DOI:10.1021/acsomega.2c06369
摘要
The binary as well as ternary nanocomposites of the square-facet nanobar Co-MOF-derived Co3O4@Co/N-CNTs (N-CNTs: nitrogen-doped carbon nanotubes) with Ag NPs and rGO have been synthesized via an easy wet chemical route, and their supercapacitor behavior was then studied. At a controlled pH of the precursor solution, square-facet nanobars of Co-MOF were first synthesized by the solvothermal method and then pyrolyzed under a controlled nitrogen atmosphere to get a core-shell system of Co3O4@Co/N-CNTs. In the second step, different compositions of Co3O4@Co/N-CNT core-shell structures were formed by an ex-situ method with Ag NPs and rGO moieties. Among several bare, binary, and ternary compositions tested in 6 M aqueous KOH electrolyte, a ternary nanocomposite having a 7.0:1.5:1.5 stoichiometric ratio of Co3O4@Co/N-CNT, Ag NPs, and rGO, respectively, reported the highest specific capacitance (3393.8 F g-1 at 5 mV s-1). The optimized nanocomposite showed the energy density, power density, and Coulombic efficiency of 74.1 W h.kg-1, 443.7 W.kg-1, and 101.3%, respectively, with excellent electrochemical stability. After testing an asymmetrical supercapacitor with a Co3O4@Co/N-CNT/Ag NPs/rGO/nickel foam cathode and an activated carbon/nickel foam anode, it showed 4.9 W h.kg-1 of energy density and 5000.0 W.kg-1 of power density.
科研通智能强力驱动
Strongly Powered by AbleSci AI