Combination of terminal sliding mode and finite-time state-dependent Riccati equation: Flapping-wing flying robot control

控制理论(社会学) Riccati方程 滑模控制 终端滑动模式 代数Riccati方程 控制器(灌溉) 变结构控制 数学 线性二次调节器 非线性系统 李雅普诺夫函数 最优控制 微分方程 计算机科学 数学优化 数学分析 控制(管理) 物理 人工智能 生物 量子力学 农学
作者
Saeed Rafee Nekoo,José Ángel Acosta,Anı́bal Ollero
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part I: Journal Of Systems And Control Engineering [SAGE]
卷期号:237 (5): 870-887 被引量:5
标识
DOI:10.1177/09596518221138627
摘要

A novel terminal sliding mode control is introduced to control a class of nonlinear uncertain systems in finite time. Having command on the definition of the final time as an input control parameter is the goal of this work. Terminal sliding mode control is naturally a finite-time controller though the time cannot be set as input, and the convergence time is not exactly known to the user before execution of the control loop. The sliding surface of the introduced controller is equipped with a finite-time gain that finishes the control task in the desired predefined time. The gain is found by partitioning the state-dependent differential Riccati equation gain, then arranging the sub-blocks in a symmetric positive-definite structure. The state-dependent differential Riccati equation is a nonlinear optimal controller with a final boundary condition that penalizes the states at the final time. This guides the states to the desired condition by imposing extra force on the input control law. Here the gain is removed from standard state-dependent differential Riccati equation control law (partitioned and made symmetric positive-definite) and inserted into the nonlinear sliding surface to present a novel finite-time terminal sliding mode control. The stability of the proposed terminal sliding mode control is guaranteed by the definition of the adaptive gain of terminal sliding mode control, which is limited by the Lyapunov stability condition. The proposed approach was validated and compared with state-dependent differential Riccati equation and conventional terminal sliding mode control as independent controllers, applied on a van der Pol oscillator. The capability of the proposed approach of controlling complex systems was checked by simulating a flapping-wing flying robot. The flapping-wing flying robot possesses a highly nonlinear model with uncertainty and disturbance caused by flapping. The flight assumptions also limit the input law significantly. The proposed terminal sliding mode control successfully controlled the illustrative example and flapping-wing flying robot model and has been compared with state-dependent differential Riccati equation and conventional terminal sliding mode control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白苹果完成签到 ,获得积分10
刚刚
科目三应助夏夏采纳,获得10
1秒前
酷波er应助123采纳,获得30
1秒前
天宇完成签到,获得积分10
1秒前
2秒前
王77应助科研通管家采纳,获得50
5秒前
JamesPei应助科研通管家采纳,获得30
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
美好斓应助科研通管家采纳,获得30
5秒前
隐形曼青应助天宇采纳,获得10
6秒前
科研張应助感性的开山采纳,获得20
6秒前
8秒前
8秒前
Aurora发布了新的文献求助10
8秒前
hh10ve完成签到,获得积分10
9秒前
9秒前
爱听歌的栾完成签到,获得积分10
9秒前
脑洞疼应助SXYYXS采纳,获得10
9秒前
烟花应助Wyt采纳,获得10
10秒前
13秒前
14秒前
15秒前
16秒前
水晶茶杯发布了新的文献求助20
16秒前
17秒前
今后应助xiatl采纳,获得10
18秒前
温眼张发布了新的文献求助10
19秒前
专注的帆布鞋完成签到 ,获得积分10
19秒前
19秒前
20秒前
ET发布了新的文献求助10
21秒前
动听靖完成签到 ,获得积分10
21秒前
22秒前
23秒前
24秒前
共享精神应助执着的忻采纳,获得10
25秒前
skmksd发布了新的文献求助10
25秒前
hyx9504发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124565
求助须知:如何正确求助?哪些是违规求助? 2774891
关于积分的说明 7724521
捐赠科研通 2430358
什么是DOI,文献DOI怎么找? 1291087
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297