双功能
材料科学
电催化剂
异质结
催化作用
电子转移
阴极
贵金属
化学工程
析氧
合金
化学物理
电化学
金属
物理化学
光电子学
电极
化学
冶金
工程类
生物化学
作者
Peng Zhang,Xiaobin Hui,Yingjian Nie,Rutao Wang,Cheng‐Xiang Wang,Zhiwei Zhang,Longwei Yin
出处
期刊:Small
[Wiley]
日期:2023-01-08
卷期号:19 (15)
被引量:23
标识
DOI:10.1002/smll.202206742
摘要
High-entropy alloys (HEAs) are attracting increased attention as an alternative to noble metals for various catalytic reactions. However, it is of great challenge and fundamental importance to develop spatial HEA heterostructures to manipulate d-band center of interfacial metal atoms and modulate electron-distribution to enhance electrocatalytic activity of HEA catalysts. Herein, an efficient strategy is demonstrated to construct unique well-designed HEAs spatial heterostructure electrocatalyst (HEA@Pt) as bifunctional cathode to accelerate oxygen reduction and evolution reaction (ORR/OER) kinetics for Li-O2 batteries, where uniform Pt dendrites grow on PtRuFeCoNi HEA at a low angle boundary. Such atomically connected HEA spatial interfaces engender efficient electrons from HEA to Pt due to discrepancy of work functions, modulating electron distribution for fast interfacial electron transfer, and abundant active sites. Theoretical calculations reveal that electron redistribution manipulates d-band center of interfacial metal atoms, allowing appropriate adsorption energy of oxygen species to lower ORR/OER reaction barriers. Hence, Li-O2 battery based on HEA@Pt electrocatalyst delivers a minimal polarization potential (0.37 V) and long-term cyclability (210 cycles) under a cut-off capacity of 1000 mAh g-1 , surpassing most previously reported noble metal-based catalysts. This work provides significant insights on electron-modulation and d-band center optimization for advanced electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI