DaDL-SChlo: protein subchloroplast localization prediction based on generative adversarial networks and pre-trained protein language model

计算机科学 人工智能 生成语法 化学 机器学习
作者
Xiao Wang,Lijun Han,Rong Wang,Haoran Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:1
标识
DOI:10.1093/bib/bbad083
摘要

Chloroplast is a crucial site for photosynthesis in plants. Determining the location and distribution of proteins in subchloroplasts is significant for studying the energy conversion of chloroplasts and regulating the utilization of light energy in crop production. However, the prediction accuracy of the currently developed protein subcellular site predictors is still limited due to the complex protein sequence features and the scarcity of labeled samples. We propose DaDL-SChlo, a multi-location protein subchloroplast localization predictor, which addresses the above problems by fusing pre-trained protein language model deep learning features with traditional handcrafted features and using generative adversarial networks for data augmentation. The experimental results of cross-validation and independent testing show that DaDL-SChlo has greatly improved the prediction performance of protein subchloroplast compared with the state-of-the-art predictors. Specifically, the overall actual accuracy outperforms the state-of-the-art predictors by 10.7% on 10-fold cross-validation and 12.6% on independent testing. DaDL-SChlo is a promising and efficient predictor for protein subchloroplast localization. The datasets and codes of DaDL-SChlo are available at https://github.com/xwanggroup/DaDL-SChlo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲雨寒完成签到,获得积分10
刚刚
yy发布了新的文献求助10
1秒前
meimale完成签到,获得积分10
1秒前
雨相所至发布了新的文献求助10
1秒前
呆萌井完成签到,获得积分10
2秒前
微笑的若魔完成签到 ,获得积分10
3秒前
北城完成签到 ,获得积分10
3秒前
束玲玲完成签到,获得积分10
3秒前
江雁完成签到,获得积分10
5秒前
满天星辰独览完成签到 ,获得积分10
5秒前
5秒前
bee完成签到 ,获得积分10
5秒前
小宁完成签到,获得积分10
7秒前
hbj完成签到,获得积分10
7秒前
张一完成签到,获得积分10
10秒前
windmill完成签到,获得积分10
10秒前
赘婿应助David采纳,获得10
11秒前
CipherSage应助是我呀吼采纳,获得10
11秒前
倪好完成签到,获得积分10
14秒前
谦让汝燕完成签到,获得积分10
14秒前
16秒前
1234@完成签到 ,获得积分10
17秒前
雨相所至完成签到,获得积分10
17秒前
研友_8oYg4n完成签到,获得积分10
17秒前
和光同尘发布了新的文献求助20
17秒前
迷路凌柏完成签到 ,获得积分10
17秒前
18秒前
冬亦发布了新的文献求助10
19秒前
清脆迎曼应助小喜采纳,获得10
19秒前
机智毛豆完成签到,获得积分10
20秒前
20秒前
jzmulyl完成签到,获得积分10
20秒前
薛乎虚完成签到 ,获得积分10
20秒前
gaogao完成签到,获得积分10
21秒前
糖炒栗子完成签到,获得积分10
22秒前
汉堡包应助马前人采纳,获得10
22秒前
m李完成签到 ,获得积分10
22秒前
吴旭东发布了新的文献求助10
23秒前
23秒前
deluohaida完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798