Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization

材料科学 聚吡咯 自愈水凝胶 互穿聚合物网络 明胶 生物医学工程 聚合物 复合材料 化学 高分子化学 聚合 工程类 生物化学
作者
Sayan Deb Dutta,Keya Ganguly,Aayushi Randhawa,Tejal V. Patil,Dinesh K. Patel,Ki‐Taek Lim
出处
期刊:Biomaterials [Elsevier]
卷期号:294: 121999-121999 被引量:36
标识
DOI:10.1016/j.biomaterials.2023.121999
摘要

In recent years, three-dimensional (3D) bioprinting of conductive hydrogels has made significant progress in the fabrication of high-resolution biomimetic structures with gradual complexity. However, the lack of an effective cross-linking strategy, ideal shear-thinning, appropriate yield strength, and higher print fidelity with excellent biofunctionality remains a challenge for developing cell-laden constructs, hindering the progress of extrusion-based 3D printing of conductive polymers. In this study, a highly stable and conductive bioink was developed based on polypyrrole-grafted gelatin methacryloyl (GelMA-PPy) with a triple cross-linking (thermo-photo-ionically) strategy for direct ink writing-based 3D printing applications. The triple-cross-linked hydrogel with dynamic semi-inner penetrating polymer network (semi-IPN) displayed excellent shear-thinning properties, with improved shape fidelity and structural stability during 3D printing. The as-fabricated hydrogel ink also exhibited “plug-like non-Newtonian” flow behavior with minimal disturbance. The bioprinted GelMA-PPy-Fe hydrogel showed higher cytocompatibility (93%) of human bone mesenchymal stem cells (hBMSCs) under microcurrent stimulation (250 mV/20 min/day). Moreover, the self-supporting and tunable mechanical properties of the GelMA-PPy bioink allowed 3D printing of high-resolution biological architectures. As a proof of concept, we printed a full-thickness rat bone model to demonstrate the structural stability. Transcriptomic analysis revealed that the 3D bioprinted hBMSCs highly expressed gene hallmarks for NOTCH/mitogen-activated protein kinase (MAPK)/SMAD signaling while down-regulating the Wnt/β-Catenin and epigenetic signaling pathways during osteogenic differentiation for up to 7 days. These results suggest that the developed GelMA-PPy bioink is highly stable and non-toxic to hBMSCs and can serve as a promising platform for bone tissue engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助大气的不乐采纳,获得10
1秒前
在水一方应助chen7采纳,获得30
2秒前
pluto应助zhang08采纳,获得10
2秒前
高兴的小完成签到,获得积分10
5秒前
科研通AI2S应助李某某采纳,获得10
6秒前
7秒前
小杨完成签到 ,获得积分10
7秒前
MissXia完成签到,获得积分10
7秒前
orixero应助王青青采纳,获得10
8秒前
穴居人完成签到,获得积分10
9秒前
你是我的小月亮完成签到 ,获得积分10
10秒前
10秒前
长颈鹿完成签到,获得积分10
14秒前
FashionBoy应助感动忆曼采纳,获得10
15秒前
zjq完成签到,获得积分10
17秒前
18秒前
19秒前
赘婿应助DIPLO采纳,获得10
20秒前
穴居人发布了新的文献求助10
20秒前
xiaotaiyang发布了新的文献求助10
20秒前
找文献啊找文献应助Menand采纳,获得30
20秒前
共享精神应助liduoduo采纳,获得10
21秒前
lu完成签到,获得积分10
22秒前
qq完成签到,获得积分10
23秒前
23秒前
不配.应助龍龖龘采纳,获得10
23秒前
华仔应助拉粑粑小魔仙采纳,获得10
24秒前
净00发布了新的文献求助10
25秒前
王青青发布了新的文献求助10
25秒前
26秒前
酷波er应助自然千山采纳,获得10
27秒前
大模型应助科研通管家采纳,获得10
28秒前
脑洞疼应助qq采纳,获得10
28秒前
ding应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240144
求助须知:如何正确求助?哪些是违规求助? 2885167
关于积分的说明 8237211
捐赠科研通 2553486
什么是DOI,文献DOI怎么找? 1381648
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 624996