Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network

人工神经网络 可靠性(半导体) 计算机科学 超参数 工程类 功率(物理) 人工智能 量子力学 物理
作者
Yiming Zhang,Jingxiang Li,Liangyu Fei,Zhao Shengdun,Jingzhou Gao,Wenpeng Yan,Shengdun Zhao
出处
期刊:Energy [Elsevier BV]
卷期号:268: 126701-126701 被引量:9
标识
DOI:10.1016/j.energy.2023.126701
摘要

Accurately estimating the operational performance of electric coolant pump (ECP) can support long-term sensorless operational monitoring and reduce the cost and energy consumption of a vehicle thermal management system. However, there are some problems such as low estimation precision of theoretical model and back propagation neural network (BPNN) models, and the input parameters of existing studies are difficult to obtain at the ECP. In this study, a novel ISSA-BPNN estimation model is proposed that combines a hybrid strategy improved sparrow search algorithm (SSA) with the BPNN after hyperparameter optimization, and for the first time analyzes and uses the total power easily obtained as the input data of the model. Multiple experimental results show that the estimation precision and reliability of the proposed ISSA-BPNN model are much higher than those of the present theoretical models and BPNN methods. The average training time of the proposed ISSA-BPNN model is 226.9 s, and the average real-time operation time is about 5 ms, which meets the real-time application requirements. The proposed model is also applicable to the operational state estimation of other types of integrated pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼向珊发布了新的文献求助10
1秒前
Libgenxxxx完成签到,获得积分10
1秒前
狂野萤完成签到,获得积分10
2秒前
3秒前
科研通AI5应助科研果采纳,获得20
5秒前
江浙涵涵发布了新的文献求助30
5秒前
SciGPT应助积极的尔岚采纳,获得10
5秒前
6秒前
SYLH应助qqqqqq采纳,获得30
6秒前
smottom应助Jonathan采纳,获得10
6秒前
7秒前
念姬发布了新的文献求助10
7秒前
8秒前
cloud完成签到,获得积分10
9秒前
10秒前
hui关闭了hui文献求助
10秒前
11秒前
功必扬完成签到,获得积分10
12秒前
小肥吴完成签到,获得积分10
13秒前
Esther完成签到,获得积分10
16秒前
义气谷蕊完成签到,获得积分10
17秒前
18秒前
梦白鸽发布了新的文献求助20
18秒前
曾经小伙完成签到 ,获得积分10
19秒前
qqqqqq完成签到,获得积分10
19秒前
phstar关注了科研通微信公众号
19秒前
20秒前
鲤鱼向珊完成签到,获得积分10
21秒前
orixero应助迷人的雪珍采纳,获得10
21秒前
科研通AI5应助峪星采纳,获得10
22秒前
orixero应助Giggle采纳,获得10
23秒前
小马甲应助称心热狗采纳,获得10
23秒前
wjj119完成签到,获得积分10
25秒前
今后应助shiyu采纳,获得10
26秒前
QhL完成签到,获得积分10
27秒前
细腻友安完成签到,获得积分20
28秒前
29秒前
p454q完成签到 ,获得积分10
31秒前
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511908
关于积分的说明 11160656
捐赠科研通 3246646
什么是DOI,文献DOI怎么找? 1793433
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403