阳极
材料科学
离子
空位缺陷
电化学
扩散
储能
纳米技术
化学物理
电极
结晶学
物理化学
化学
热力学
有机化学
物理
功率(物理)
作者
Dawei Sha,Yurong You,Rongxiang Hu,Xin Cao,Yicheng Wei,Heng Zhang,Long Pan,ZhengMing Sun
标识
DOI:10.1002/adma.202211311
摘要
Anion vacancy engineering (AVE) is widely used to improve the Li-ion and Na-ion storage of conversion-type anode materials. However, AVE is still an emerging strategy in K-ion batteries, which are promising for large-scale energy storage. In addition, the role of anion vacancies on ion storage is far from clear, despite several proposed explanations. Herein, by employing VSe2 as a model conversion-type anode material, Se vacancies are intentionally introduced (labeled as P-VSe2-x ) to investigate their effect on K+ storage. The P-VSe2-x shows excellent cyclability in half cells (143 mA h g-1 at 3.0 A g-1 after 1000 cycles) and high energy density in coin-type full cells (206.8 Wh kg-1 ). By applying various electrochemical techniques, the effects of Se vacancies on the redox potentials of K-ion insertion/extraction and the K-ion diffusion in electrodes upon cycling are uncovered. In addition, the structural evolution of Se vacancies during potassiation/de-potassiation using various operando and ex characterizations is revealed. Moreover, it is demonstrated that Se vacancies can facilitate the breaking of VSe bonds upon the P-VSe2-x conversion using theoretical calculations. This work comprehensively explains the role of anion vacancies in ion storage for developing high-performance conversion-type anode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI