Parameterization of embedded discrete fracture models (EDFM) for efficient history matching of fractured reservoirs

基质(化学分析) 基函数 断裂(地质) 基础(线性代数) 算法 灵敏度(控制系统) 数学 计算机科学 数学优化 几何学 数学分析 地质学 岩土工程 工程类 材料科学 电子工程 复合材料
作者
Changsoo Kim,Tsubasa Onishi,Hongquan Chen,Akhil Datta‐Gupta
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:204: 108681-108681 被引量:10
标识
DOI:10.1016/j.petrol.2021.108681
摘要

Embedded Discrete Fracture Model (EDFM) is a promising approach to describe the reservoirs with fractures. Conventional streamline-based inversion method has been limited to the dual-porosity models where the natural fractures are modeled implicitly and flow between matrix blocks is not accounted for. To address this challenge, we propose a novel parameterization and hierarchical multi-scale history matching formulation for EDFM's. We sequentially include basis functions, from large to small scale, to calculate basis coefficient sensitivity combined with streamline-based analytical sensitivity, for updating matrix and fracture properties to match the reservoir dynamic response. In EDFM dominant fractures are explicitly represented within the matrix domain. The matrix-fracture and fracture-fracture interactions are modeled using non-neighbor connections (NNCs) with corresponding transmissibility. In this research, grid connectivity information including NNCs and the reservoir properties in the prior model are first used to construct a grid Laplacian matrix. Next, the eigenvectors of the Laplacian matrix are used as the transformation basis vectors through which matrix and fracture properties are mapped to a low-dimensional transform domain. This step significantly reduces the number of unknowns and also regularizes the inverse problem. Finally, the basis coefficient sensitivity in the transform domain is analytically calculated using streamlines and the updated basis coefficients are then used to reconstruct the reservoir property field. We first illustrate the proposed parameterization of the EDFM and its effectiveness by reconstructing low rank approximations of the spatial distribution of the matrix and fracture properties. Conventional streamline-based inversion method typically leads to large property changes along the streamlines. With the proposed parameterization approach, the basis coefficient sensitivities enable us to effectively calibrate the EDFM in a more geologically continuous manner on both matrix domain and fracture planes. We demonstrate the power and efficacy of our method through application to a field scale reservoir model with complex fault structure, channels, and dominant natural fractures. The example involves waterflood history matching with water-cut and bottom-hole pressure data. The proposed approach effectively updates the prior permeability field along the fracture planes and the matrix domain, resulting in significantly improved history match. The parameterization of EDFM has high compression power to represent important geological trend and fracture properties with significantly reduced number of parameters. The new model calibration method extends the capability of the streamline-based inversion method to explicitly model flow in natural fractures and also flow between matrix blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤凰之玉完成签到 ,获得积分10
1秒前
shi hui应助冬瓜炖排骨采纳,获得10
1秒前
2秒前
dyh6802发布了新的文献求助10
2秒前
冷静雅青发布了新的文献求助10
2秒前
CipherSage应助猪猪hero采纳,获得10
3秒前
领导范儿应助不凡采纳,获得30
3秒前
顾矜应助坚定的亦绿采纳,获得10
4秒前
4秒前
yu完成签到,获得积分10
4秒前
Chris完成签到,获得积分10
5秒前
cookie发布了新的文献求助10
6秒前
胖仔完成签到,获得积分10
6秒前
Chan0501完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
duxinyue发布了新的文献求助10
8秒前
汉堡转转转完成签到,获得积分10
9秒前
喵酱发布了新的文献求助30
9秒前
6666完成签到,获得积分10
9秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
10秒前
wjn完成签到,获得积分10
10秒前
11秒前
竹子完成签到,获得积分10
11秒前
MAKEYF完成签到 ,获得积分10
11秒前
12秒前
Owen应助猪猪hero采纳,获得10
12秒前
13秒前
CipherSage应助海棠yiyi采纳,获得50
14秒前
Khr1stINK发布了新的文献求助10
14秒前
14秒前
脑洞疼应助卡卡采纳,获得10
14秒前
14秒前
Rrr发布了新的文献求助10
15秒前
科研通AI5应助zmy采纳,获得10
16秒前
William鉴哲发布了新的文献求助10
16秒前
情怀应助只道寻常采纳,获得10
17秒前
17秒前
cyy完成签到,获得积分20
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794