已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Parameterization of embedded discrete fracture models (EDFM) for efficient history matching of fractured reservoirs

基质(化学分析) 基函数 断裂(地质) 基础(线性代数) 算法 灵敏度(控制系统) 数学 计算机科学 数学优化 几何学 数学分析 地质学 岩土工程 工程类 材料科学 电子工程 复合材料
作者
Changsoo Kim,Tsubasa Onishi,Hongquan Chen,Akhil Datta‐Gupta
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:204: 108681-108681 被引量:10
标识
DOI:10.1016/j.petrol.2021.108681
摘要

Embedded Discrete Fracture Model (EDFM) is a promising approach to describe the reservoirs with fractures. Conventional streamline-based inversion method has been limited to the dual-porosity models where the natural fractures are modeled implicitly and flow between matrix blocks is not accounted for. To address this challenge, we propose a novel parameterization and hierarchical multi-scale history matching formulation for EDFM's. We sequentially include basis functions, from large to small scale, to calculate basis coefficient sensitivity combined with streamline-based analytical sensitivity, for updating matrix and fracture properties to match the reservoir dynamic response. In EDFM dominant fractures are explicitly represented within the matrix domain. The matrix-fracture and fracture-fracture interactions are modeled using non-neighbor connections (NNCs) with corresponding transmissibility. In this research, grid connectivity information including NNCs and the reservoir properties in the prior model are first used to construct a grid Laplacian matrix. Next, the eigenvectors of the Laplacian matrix are used as the transformation basis vectors through which matrix and fracture properties are mapped to a low-dimensional transform domain. This step significantly reduces the number of unknowns and also regularizes the inverse problem. Finally, the basis coefficient sensitivity in the transform domain is analytically calculated using streamlines and the updated basis coefficients are then used to reconstruct the reservoir property field. We first illustrate the proposed parameterization of the EDFM and its effectiveness by reconstructing low rank approximations of the spatial distribution of the matrix and fracture properties. Conventional streamline-based inversion method typically leads to large property changes along the streamlines. With the proposed parameterization approach, the basis coefficient sensitivities enable us to effectively calibrate the EDFM in a more geologically continuous manner on both matrix domain and fracture planes. We demonstrate the power and efficacy of our method through application to a field scale reservoir model with complex fault structure, channels, and dominant natural fractures. The example involves waterflood history matching with water-cut and bottom-hole pressure data. The proposed approach effectively updates the prior permeability field along the fracture planes and the matrix domain, resulting in significantly improved history match. The parameterization of EDFM has high compression power to represent important geological trend and fracture properties with significantly reduced number of parameters. The new model calibration method extends the capability of the streamline-based inversion method to explicitly model flow in natural fractures and also flow between matrix blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
燊yy发布了新的文献求助30
8秒前
shadow完成签到,获得积分10
9秒前
13秒前
13秒前
星辰大海应助Shu采纳,获得10
13秒前
汉堡包应助apollo3232采纳,获得10
14秒前
打打应助MLL采纳,获得10
17秒前
苗轩发布了新的文献求助20
18秒前
dragonborn完成签到,获得积分20
18秒前
在水一方应助dragonborn采纳,获得10
21秒前
幽默雨完成签到,获得积分10
22秒前
22秒前
huminjie完成签到 ,获得积分10
24秒前
25秒前
斯文败类应助zhouzhou采纳,获得10
27秒前
28秒前
29秒前
29秒前
dpp发布了新的文献求助10
30秒前
薄荷完成签到 ,获得积分10
30秒前
pp完成签到,获得积分20
32秒前
宋虹发布了新的文献求助10
34秒前
三杯酒好关注了科研通微信公众号
35秒前
在水一方应助xiaoguo采纳,获得10
35秒前
小马甲应助XhuaQye采纳,获得10
36秒前
36秒前
条条123发布了新的文献求助10
36秒前
38秒前
充电宝应助wbbbb采纳,获得10
38秒前
爆米花应助McchainQ采纳,获得10
39秒前
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
40秒前
雪白元灵发布了新的文献求助10
42秒前
43秒前
大模型应助宋虹采纳,获得10
43秒前
笃定完成签到 ,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380