已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Parameterization of embedded discrete fracture models (EDFM) for efficient history matching of fractured reservoirs

基质(化学分析) 基函数 断裂(地质) 基础(线性代数) 算法 灵敏度(控制系统) 数学 计算机科学 数学优化 几何学 数学分析 地质学 岩土工程 工程类 材料科学 电子工程 复合材料
作者
Changsoo Kim,Tsubasa Onishi,Hongquan Chen,Akhil Datta‐Gupta
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:204: 108681-108681 被引量:10
标识
DOI:10.1016/j.petrol.2021.108681
摘要

Embedded Discrete Fracture Model (EDFM) is a promising approach to describe the reservoirs with fractures. Conventional streamline-based inversion method has been limited to the dual-porosity models where the natural fractures are modeled implicitly and flow between matrix blocks is not accounted for. To address this challenge, we propose a novel parameterization and hierarchical multi-scale history matching formulation for EDFM's. We sequentially include basis functions, from large to small scale, to calculate basis coefficient sensitivity combined with streamline-based analytical sensitivity, for updating matrix and fracture properties to match the reservoir dynamic response. In EDFM dominant fractures are explicitly represented within the matrix domain. The matrix-fracture and fracture-fracture interactions are modeled using non-neighbor connections (NNCs) with corresponding transmissibility. In this research, grid connectivity information including NNCs and the reservoir properties in the prior model are first used to construct a grid Laplacian matrix. Next, the eigenvectors of the Laplacian matrix are used as the transformation basis vectors through which matrix and fracture properties are mapped to a low-dimensional transform domain. This step significantly reduces the number of unknowns and also regularizes the inverse problem. Finally, the basis coefficient sensitivity in the transform domain is analytically calculated using streamlines and the updated basis coefficients are then used to reconstruct the reservoir property field. We first illustrate the proposed parameterization of the EDFM and its effectiveness by reconstructing low rank approximations of the spatial distribution of the matrix and fracture properties. Conventional streamline-based inversion method typically leads to large property changes along the streamlines. With the proposed parameterization approach, the basis coefficient sensitivities enable us to effectively calibrate the EDFM in a more geologically continuous manner on both matrix domain and fracture planes. We demonstrate the power and efficacy of our method through application to a field scale reservoir model with complex fault structure, channels, and dominant natural fractures. The example involves waterflood history matching with water-cut and bottom-hole pressure data. The proposed approach effectively updates the prior permeability field along the fracture planes and the matrix domain, resulting in significantly improved history match. The parameterization of EDFM has high compression power to represent important geological trend and fracture properties with significantly reduced number of parameters. The new model calibration method extends the capability of the streamline-based inversion method to explicitly model flow in natural fractures and also flow between matrix blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Diamond完成签到 ,获得积分10
1秒前
1秒前
1秒前
winnie发布了新的文献求助10
2秒前
hcy完成签到,获得积分10
2秒前
三金发布了新的文献求助10
4秒前
5秒前
level完成签到 ,获得积分10
5秒前
肥仔完成签到 ,获得积分10
6秒前
desperter完成签到,获得积分10
7秒前
香鸡滑菇发布了新的文献求助10
7秒前
小蘑菇应助kaiyi采纳,获得10
9秒前
11秒前
小凯完成签到 ,获得积分10
14秒前
14秒前
长生完成签到 ,获得积分10
14秒前
快乐的纸飞机完成签到 ,获得积分10
16秒前
单薄绿竹完成签到,获得积分10
17秒前
张蓓蓓发布了新的文献求助10
18秒前
Facbiu完成签到 ,获得积分20
19秒前
传奇3应助安静沛春采纳,获得10
19秒前
rebron完成签到,获得积分10
20秒前
弈天完成签到 ,获得积分10
20秒前
静静呀完成签到 ,获得积分10
22秒前
忧郁夏兰发布了新的文献求助10
24秒前
勤奋的猫咪完成签到 ,获得积分10
25秒前
安静沛春完成签到,获得积分10
25秒前
NS发布了新的文献求助10
25秒前
思源应助哟嚛采纳,获得10
26秒前
28秒前
顏泰楊完成签到,获得积分10
33秒前
晚意完成签到 ,获得积分10
33秒前
38秒前
Joins_Su完成签到 ,获得积分10
38秒前
BYGYHQ完成签到 ,获得积分10
38秒前
汪鸡毛完成签到 ,获得积分10
39秒前
wanci应助爱听歌笑寒采纳,获得10
40秒前
安静沛春发布了新的文献求助10
42秒前
basil完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934895
求助须知:如何正确求助?哪些是违规求助? 4202593
关于积分的说明 13057993
捐赠科研通 3977141
什么是DOI,文献DOI怎么找? 2179362
邀请新用户注册赠送积分活动 1195516
关于科研通互助平台的介绍 1106915